Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(18): 180805, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759184

RESUMO

Quantum entanglement is a crucial resource for learning properties from nature, but a precise characterization of its advantage can be challenging. In this Letter, we consider learning algorithms without entanglement to be those that only utilize states, measurements, and operations that are separable between the main system of interest and an ancillary system. Interestingly, we show that these algorithms are equivalent to those that apply quantum circuits on the main system interleaved with mid-circuit measurements and classical feedforward. Within this setting, we prove a tight lower bound for Pauli channel learning without entanglement that closes the gap between the best-known upper and lower bound. In particular, we show that Θ(2^{n}ϵ^{-2}) rounds of measurements are required to estimate each eigenvalue of an n-qubit Pauli channel to ϵ error with high probability when learning without entanglement. In contrast, a learning algorithm with entanglement only needs Θ(ϵ^{-2}) copies of the Pauli channel. The tight lower bound strengthens the foundation for an experimental demonstration of entanglement-enhanced advantages for Pauli noise characterization.

2.
Phys Rev Lett ; 131(1): 010401, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478438

RESUMO

Cross-entropy (XE) measure is a widely used benchmark to demonstrate quantum computational advantage from sampling problems, such as random circuit sampling using superconducting qubits and boson sampling (BS). We present a heuristic classical algorithm that attains a better XE than the current BS experiments in a verifiable regime and is likely to attain a better XE score than the near-future BS experiments in a reasonable running time. The key idea behind the algorithm is that there exist distributions that correlate with the ideal BS probability distribution and that can be efficiently computed. The correlation and the computability of the distribution enable us to postselect heavy outcomes of the ideal probability distribution without computing the ideal probability, which essentially leads to a large XE. Our method scores a better XE than the recent Gaussian BS experiments when implemented at intermediate, verifiable system sizes. Much like current state-of-the-art experiments, we cannot verify that our spoofer works for quantum-advantage-size systems. However, we demonstrate that our approach works for much larger system sizes in fermion sampling, where we can efficiently compute output probabilities. Finally, we provide analytic evidence that the classical algorithm is likely to spoof noisy BS efficiently.

3.
Phys Rev Lett ; 128(19): 190501, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622039

RESUMO

Boson sampling is a fundamentally and practically important task that can be used to demonstrate quantum supremacy using noisy intermediate-scale quantum devices. In this Letter, we present classical sampling algorithms for single-photon and Gaussian input states that take advantage of a graph structure of a linear-optical circuit. The algorithms' complexity grows as so-called treewidth, which is closely related to the connectivity of a given linear-optical circuit. Using the algorithms, we study approximated simulations for local Haar-random linear-optical circuits. For equally spaced initial sources, we show that, when the circuit depth is less than the quadratic in the lattice spacing, the efficient simulation is possible with an exponentially small error. Notably, right after this depth, photons start to interfere each other and the algorithms' complexity becomes subexponential in the number of sources, implying that there is a sharp transition of its complexity. Finally, when a circuit is sufficiently deep enough for photons to typically propagate to all modes, the complexity becomes exponential as generic sampling algorithms. We numerically implement a likelihood test with a recent Gaussian boson sampling experiment and show that the treewidth-based algorithm with a limited treewidth renders a larger likelihood than the experimental data.

4.
Phys Rev Lett ; 128(18): 180503, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594100

RESUMO

We investigate the quantum metrological power of typical continuous-variable (CV) quantum networks. Particularly, we show that most CV quantum networks provide an entanglement to quantum states in distant nodes that enables one to achieve the Heisenberg scaling in the number of modes for distributed quantum displacement sensing, which cannot be attained using an unentangled probe state. Notably, our scheme only requires local operations and measurements after generating an entangled probe using the quantum network. In addition, we find a tolerable photon-loss rate that maintains the quantum enhancement. Finally, we numerically demonstrate that even when CV quantum networks are composed of local beam splitters, the quantum enhancement can be attained when the depth is sufficiently large.

5.
Phys Rev Lett ; 126(12): 120502, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834817

RESUMO

We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher information of arbitrary quantum states for the separation of the objects, which quantifies the resolution, always converges to zero as the separation goes to zero. Noisy cases contrast with noiseless cases where the quantum Fisher information has been shown to be nonzero for a small distance in various circumstances, revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such as dark counts, also makes the classical Fisher information of the measurement approach to zero as the separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources is quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.

6.
Phys Rev Lett ; 123(4): 040602, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491280

RESUMO

Standard computation of size and credibility of a Bayesian credible region for certifying any point estimator of an unknown parameter (such as a quantum state, channel, phase, etc.) requires selecting points that are in the region from a finite parameter-space sample, which is infeasible for a large dataset or dimension as the region would then be extremely small. We solve this problem by introducing the in-region sampling theory to compute both region qualities just by sampling appropriate functions over the region itself using any Monte Carlo sampling method. We take in-region sampling to the next level by understanding the credible-region capacity (an alternative description for the region content to size) as the average l_{p}-norm distance (p>0) between a random region point and the estimator, and present analytical formulas for p=2 to estimate both the capacity and credibility for any dimension and a sufficiently large dataset without Monte Carlo sampling, thereby providing a quick alternative to Bayesian certification. All results are discussed in the context of quantum-state tomography.

7.
Sci Rep ; 7(1): 3765, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630498

RESUMO

We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize the MCP and so does the standard W state among the W-type states. We find the lower and upper bounds of the MCP and show for pure states that the lower bound, zero, is achieved if and only if the three-qubit state is biseparable or fully separable. The upper bound is achieved only for the standard GHZ state. Since the MCP is nonzero only when three-qubit entanglement exists, this quantity may be a good candidate to measure the degree of genuine tripartite entanglement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...