Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Org Lett ; 26(38): 8211-8215, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39291900

RESUMO

We synthesized [2]rotaxanes featuring a catechol borate ion-containing crown ether and secondary ammonium ions. These rotaxane components show both ion-ion interactions and hydrogen bonds. X-ray crystallography and NMR spectroscopy allowed elucidation of the rotaxane structure. Moreover, 1H NMR spectroscopy revealed the rotaxane synthesis can be thermodynamically controlled. The binding affinity between the borate-containing crown ether and ammonium ions is enhanced by ion-pairing.

2.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066133

RESUMO

Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from sensor observations. The model is implemented through a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully observed environments from accumulated partial observations. We show that the OV-PWM can model high-dimensional embedding maps of latent compositional embeddings representing sets of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA simulator experiments show that the OV-PWM can learn compact latent representations and generate diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities to future general-purpose mobile robots.

3.
Neuropsychopharmacol Rep ; 44(1): 115-120, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115795

RESUMO

AIM: Depressive disorder is often evaluated using established rating scales. However, consistent data collection with these scales requires trained professionals. In the present study, the "rater & estimation-system" reliability was assessed between consensus evaluation by trained psychiatrists and the estimation by 2 models of the AI-MADRS (Montgomery-Asberg Depression Rating Scale) estimation system, a machine learning algorithm-based model developed to assess the severity of depression. METHODS: During interviews with trained psychiatrists and the AI-MADRS estimation system, patients responded orally to machine-generated voice prompts from the AI-MADRS structured interview questions. The severity scores estimated from two models of the AI-MADRS estimation system, the max estimation model and the average estimation model, were compared with those by trained psychiatrists. RESULTS: A total of 51 evaluation interviews conducted on 30 patients were analyzed. Pearson's correlation coefficient with the scores evaluated by trained psychiatrists was 0.76 (95% confidence interval 0.62-0.86) for the max estimation model, and 0.86 (0.76-0.92) for the average estimation model. The ANOVA ICC rater & estimation-system reliability with the evaluation scores by trained psychiatrists was 0.51 (-0.09 to 0.79) for the max estimation model, and 0.75 (0.55-0.86) for the average estimation model. CONCLUSION: The average estimation model of AI-MADRS demonstrated substantially acceptable rater & estimation-system reliability with trained psychiatrists. Accumulating a broader training dataset and the refinement of AI-MADRS interviews are expected to improve the performance of AI-MADRS. Our findings suggest that AI technologies can significantly modernize and potentially revolutionize the realm of depression assessments.


Assuntos
Depressão , Humanos , Reprodutibilidade dos Testes
4.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960360

RESUMO

LiDAR point clouds are significantly impacted by snow in driving scenarios, introducing scattered noise points and phantom objects, thereby compromising the perception capabilities of autonomous driving systems. Current effective methods for removing snow from point clouds largely rely on outlier filters, which mechanically eliminate isolated points. This research proposes a novel translation model for LiDAR point clouds, the 'L-DIG' (LiDAR depth images GAN), built upon refined generative adversarial networks (GANs). This model not only has the capacity to reduce snow noise from point clouds, but it also can artificially synthesize snow points onto clear data. The model is trained using depth image representations of point clouds derived from unpaired datasets, complemented by customized loss functions for depth images to ensure scale and structure consistencies. To amplify the efficacy of snow capture, particularly in the region surrounding the ego vehicle, we have developed a pixel-attention discriminator that operates without downsampling convolutional layers. Concurrently, the other discriminator equipped with two-step downsampling convolutional layers has been engineered to effectively handle snow clusters. This dual-discriminator approach ensures robust and comprehensive performance in tackling diverse snow conditions. The proposed model displays a superior ability to capture snow and object features within LiDAR point clouds. A 3D clustering algorithm is employed to adaptively evaluate different levels of snow conditions, including scattered snowfall and snow swirls. Experimental findings demonstrate an evident de-snowing effect, and the ability to synthesize snow effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...