Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1256763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929074

RESUMO

In recent years, soft robots gain increasing attention as a result of their compliance when operating in unstructured environments, and their flexibility that ensures safety when interacting with humans. However, challenges lie on the difficulty to develop control algorithms due to various limitations induced by their soft structure. In this paper, we introduce a novel technique that aims to perform motion control of a modular bio-inspired soft-robotic arm, with the main focus lying on facilitating the qualitative reproduction of well-specified periodic trajectories. The introduced method combines the notion behind two previously developed methodologies both based on the Movement Primitive (MP) theory, by exploiting their capabilities while coping with their main drawbacks. Concretely, the requested actuation is initially computed using a Probabilistic MP (ProMP)-based method that considers the trajectory as a combination of simple movements previously learned and stored as a MP library. Subsequently, the key components of the resulting actuation are extracted and filtered in the frequency domain. These are eventually used as input to a Central Pattern Generator (CPG)-based model that takes over the generation of rhythmic patterns at the motor level. The proposed methodology is evaluated on a two-module soft arm. Results show that the first algorithmic component (ProMP) provides an immediate estimation of the requested actuation by avoiding time-consuming training, while the latter (CPG) further simplifies the execution by allowing its control through a low-dimensional parameterization. Altogether, these results open new avenues for the rapid acquisition of periodic movements in soft robots, and their compression into CPG parameters for long-term storage and execution.

2.
Front Robot AI ; 8: 677542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604315

RESUMO

Robots can play a significant role as assistive devices for people with movement impairment and mild cognitive deficit. In this paper we present an overview of the lightweight i-Walk intelligent robotic rollator, which offers cognitive and mobility assistance to the elderly and to people with light to moderate mobility impairment. The utility, usability, safety and technical performance of the device is investigated through a clinical study, which took place at a rehabilitation center in Greece involving real patients with mild to moderate cognitive and mobility impairment. This first evaluation study comprised a set of scenarios in a number of pre-defined use cases, including physical rehabilitation exercises, as well as mobility and ambulation involved in typical daily living activities of the patients. The design and implementation of this study is discussed in detail, along with the obtained results, which include both an objective and a subjective evaluation of the system operation, based on a set of technical performance measures and a validated questionnaire for the analysis of qualitative data, respectively. The study shows that the technical modules performed satisfactory under real conditions, and that the users generally hold very positive views of the platform, considering it safe and reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...