Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5342, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937445

RESUMO

In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.


Assuntos
Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Hipotálamo , Oryzias , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/genética , Feminino , Oryzias/metabolismo , Oryzias/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônio Luteinizante/metabolismo , Folículo Ovariano/metabolismo , Ovulação/genética
3.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781215

RESUMO

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Assuntos
Androgênios , Oryzias , Receptores Androgênicos , Comportamento Sexual Animal , Transdução de Sinais , Animais , Masculino , Oryzias/metabolismo , Oryzias/fisiologia , Comportamento Sexual Animal/fisiologia , Feminino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Androgênios/metabolismo , Agressão/fisiologia
4.
Mol Cell Endocrinol ; 580: 112101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923055

RESUMO

Terrestrial vertebrates have a population of androgen-dependent vasotocin (VT)-expressing neurons in the extended amygdala that are more abundant in males and mediate male-typical social behaviors, including aggression. Teleosts lack these neurons but instead have novel male-specific VT-expressing neurons in the tuberal hypothalamus. Here we found in medaka that vt expression in these neurons is dependent on post-pubertal gonadal androgens and that androgens can act on these neurons to directly stimulate vt transcription via the androgen receptor subtype Ara. Furthermore, administration of exogenous VT induced aggression in females and alterations in the androgen milieu led to correlated changes in the levels of tuberal hypothalamic vt expression and aggression in both sexes. However, genetic ablation of vt failed to prevent androgen-induced aggression in females. Collectively, our results demonstrate a marked androgen dependence of male-specific vt expression in the teleost tuberal hypothalamus, although its relevance to male-typical aggression needs to be further validated.


Assuntos
Agressão , Oryzias , Animais , Feminino , Masculino , Agressão/fisiologia , Androgênios/farmacologia , Androgênios/metabolismo , Comportamento Sexual Animal/fisiologia , Vasotocina/metabolismo , Oryzias/metabolismo , Hipotálamo/metabolismo
5.
PNAS Nexus ; 2(12): pgad413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111823

RESUMO

Secretogranin 2 (Scg2) is a member of the secretogranin/chromogranin family of proteins that is involved in neuropeptide and hormone packaging to secretory granules and serves as a precursor for several secreted pleiotropic peptides. A recent study in zebrafish showed that the teleost Scg2 orthologs, scg2a and scg2b, play an important role in mating behavior, but its modes of action and regulatory mechanisms remain unclear. In this study, we identify scg2a in another teleost species, medaka, by transcriptomic analysis as a gene that is expressed in an ovarian secretion-dependent manner in a group of neurons relevant to female sexual receptivity, termed FeSP neurons. Investigation of scg2a expression in the FeSP neurons of estrogen receptor (Esr)-deficient medaka revealed that it is dependent on estrogen signaling through Esr2b, the major determinant of female-typical mating behavior. Generation and characterization of scg2a-deficient medaka showed no overt changes in secretory granule packaging in FeSP neurons. This, along with the observation that Scg2a and neuropeptide B, a major neuropeptide produced by FeSP neurons, colocalize in a majority of secretory granules, suggests that Scg2a mainly serves as a precursor for secreted peptides that act in conjunction with neuropeptide B. Further, scg2a showed sexually biased expression in several brain nuclei implicated in mating behavior. However, we found no significant impact of scg2a deficiency on the performance of mating behavior in either sex. Collectively, our results indicate that, although perhaps not essential for mating behavior, scg2a acts in an estrogen/Esr2b signaling-dependent manner in neurons that are relevant to female sexual receptivity.

6.
Zoolog Sci ; 40(2): 91-104, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042689

RESUMO

For adaptation to a high salinity marine environment, cartilaginous fishes have evolved a ureosmotic strategy. They have a highly elaborate "four-loop nephron" in the kidney, which is considered to be important for reabsorption of urea from the glomerular filtrate to maintain a high concentration of urea in the body. However, the function and regulation, generally, of the "four-loop nephron" are still largely unknown due to the complicated configuration of the nephron and its many subdivided segments. Laser microdissection (LMD) followed by RNA-sequencing (RNA-seq) analysis is a powerful technique to obtain segment-dependent gene expression profiles. In the present study, using the kidney of cloudy catshark, Scyliorhinus torazame, we tested several formaldehyde-free and formaldehyde-based fixatives to optimize the fixation methods. Fixation by 1% neutral buffered formalin for 15 min resulted in sufficient RNA and structural integrities, which allowed LMD clipping of specific nephron segments and subsequent RNA-seq analysis. RNA-seq from the LMD samples of the second-loop, the fourth-loop, and the five tubular segments in the bundle zone revealed a number of specific membrane transporter genes that can characterize each segment. Among them, we examined expressions of the Na + -coupled cotransporters abundantly expressed in the second loop samples. Although the proximal II segment of the second loop is known for the elimination of excess solutes, the present results imply that the PII segment is also crucial for reabsorption of valuable solutes. Looking ahead to future studies, the segment-dependent gene expression profiling will be a powerful technique for unraveling the renal mechanisms and regulation in euryhaline elasmobranchs.


Assuntos
Microdissecção , Néfrons , Animais , Peixes , Perfilação da Expressão Gênica , RNA , Ureia/metabolismo
7.
Nat Commun ; 14(1): 1428, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918573

RESUMO

Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.


Assuntos
Oryzias , Receptores Androgênicos , Animais , Masculino , Feminino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Peixes/genética , Peixes/metabolismo , Evolução Biológica , Evolução Molecular , Oryzias/genética , Oryzias/metabolismo
8.
Commun Biol ; 5(1): 1215, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357668

RESUMO

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Assuntos
Neuropeptídeos , Oryzias , Animais , Feminino , Masculino , Oryzias/genética , Receptores de Prostaglandina E , Estrogênios , Neurônios , Neuropeptídeos/genética , Prostaglandinas
9.
Zoological Lett ; 8(1): 10, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879745

RESUMO

Generally, successful testis transplantation has been considered to require immune suppression in the recipient to avoid rejection of the transplanted tissue. In the present study, we demonstrate in medaka that allogeneic adult testicular tissue will engraft in adult recipients immediately after partial castration without the use of immunosuppressive drugs. The allografted testes are retained in the recipient's body for at least 3 months and are able to produce viable sperm that yield offspring after natural mating. Some recipients showed a high frequency (over 60%) of offspring derived from spermatozoa produced by the transplanted testicular tissue. Histological analyses showed that allografted testicular tissues included both germ cells and somatic cells that had become established within an immunocompetent recipient testis. The relative simplicity of this testis transplantation approach will benefit investigations of the basic processes of reproductive immunology and will improve the technique of gonadal tissue transplantation.

10.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962983

RESUMO

Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Oligopeptídeos/fisiologia , Oryzias , Ácido Pirrolidonocarboxílico/análogos & derivados , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Química Encefálica , Feminino , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Masculino , Neurônios/química , Neurônios/fisiologia , Oligopeptídeos/análise , Oligopeptídeos/genética , Filogenia , Ácido Pirrolidonocarboxílico/análise , Alinhamento de Sequência
11.
Commun Biol ; 4(1): 948, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373576

RESUMO

The preoptic area (POA) is one of the most evolutionarily conserved regions of the vertebrate brain and contains subsets of neuropeptide-expressing neurons. Here we found in the teleost medaka that two neuropeptides belonging to the secretin family, pituitary adenylate cyclase-activating polypeptide (Pacap) and vasoactive intestinal peptide (Vip), exhibit opposite patterns of sexually dimorphic expression in the same population of POA neurons that project to the anterior pituitary: Pacap is male-biased, whereas Vip is female-biased. Estrogen secreted by the ovary in adulthood was found to attenuate Pacap expression and, conversely, stimulate Vip expression in the female POA, thereby establishing and maintaining their opposite sexual dimorphism. Pituitary organ culture experiments demonstrated that both Pacap and Vip can markedly alter the expression of various anterior pituitary hormones. Collectively, these findings show that males and females use alternative preoptic neuropeptides to regulate anterior pituitary hormones as a result of their different estrogen milieu.


Assuntos
Estrogênios/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Oryzias/metabolismo , Hormônios Hipofisários/metabolismo , Área Pré-Óptica/metabolismo , Animais , Feminino , Masculino , Caracteres Sexuais
12.
Curr Biol ; 31(8): 1699-1710.e6, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33639108

RESUMO

Male and female animals typically display innate sex-specific mating behaviors, which, in vertebrates, are highly dependent on sex steroid signaling. While estradiol-17ß (E2) signaling through estrogen receptor 2 (ESR2) serves to defeminize male mating behavior in rodents, the available evidence suggests that E2 signaling is not required in teleosts for either male or female mating behavior. Here, we report that female medaka deficient for Esr2b, a teleost ortholog of ESR2, are not receptive to males but rather court females, despite retaining normal ovarian function with an unaltered sex steroid milieu. Thus, contrary to both prevailing views in rodents and teleosts, E2/Esr2b signaling in the brain plays a decisive role in feminization and demasculinization of female mating behavior and sexual preference in medaka. Further behavioral testing showed that mutual antagonism between E2/Esr2b signaling and androgen receptor-mediated androgen signaling in adulthood induces and actively maintains sex-typical mating behaviors and preference. Our results also revealed that the female-biased sexual dimorphism in esr2b expression in the telencephalic and preoptic nuclei implicated in mating behavior can be reversed between males and females by altering the sex steroid milieu in adulthood, likely via mechanisms involving direct E2-induced transcriptional activation. In addition, Npba, a neuropeptide mediating female sexual receptivity, was found to act downstream of E2/Esr2b signaling in these brain nuclei. Collectively, these functional and regulatory mechanisms of E2/Esr2b signaling presumably underpin the neural mechanism for induction, maintenance, and reversal of sex-typical mating behaviors and sexual preference in teleosts, at least in medaka.


Assuntos
Oryzias , Animais , Estradiol , Feminino , Hormônios Esteroides Gonadais , Masculino , Oryzias/genética , Receptores de Estrogênio , Reprodução , Comportamento Sexual Animal
13.
Elife ; 92020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783809

RESUMO

Recent studies in mice demonstrate that a subset of neurons in the medial preoptic area (MPOA) that express galanin play crucial roles in regulating parental behavior in both sexes. However, little information is available on the function of galanin in social behaviors in other species. Here, we report that, in medaka, a subset of MPOA galanin neurons occurred nearly exclusively in males, resulting from testicular androgen stimulation. Galanin-deficient medaka showed a greatly reduced incidence of male-male aggressive chases. Furthermore, while treatment of female medaka with androgen induced male-typical aggressive acts, galanin deficiency in these females attenuated the effect of androgen on chases. Given their male-biased and androgen-dependent nature, the subset of MPOA galanin neurons most likely mediate androgen-dependent male-male chases. Histological studies further suggested that variability in the projection targets of the MPOA galanin neurons may account for the species-dependent functional differences in these evolutionarily conserved neural substrates.


Assuntos
Androgênios/metabolismo , Galanina/metabolismo , Oryzias/metabolismo , Caracteres Sexuais , Animais , Animais Geneticamente Modificados , Linhagem Celular , Feminino , Galanina/genética , Expressão Gênica , Células HEK293 , Humanos , Masculino , Neurônios/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Receptores de Galanina/metabolismo , Reprodução , Transdução de Sinais , Esteroides/metabolismo
14.
Proc Biol Sci ; 287(1928): 20200713, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32517612

RESUMO

Serotonin is a biogenic monoamine conserved across phyla that is implicated in diverse physiological and behavioural functions. On examining the expression of the rate-limiting enzymes in serotonin synthesis, tryptophan hydroxylases (TPHs), in the teleost medaka (Oryzias latipes), we found that males have much higher levels of tph1 expression as compared with females. This robust sexual dimorphism was found to probably result from the direct stimulation of tph1 transcription by androgen/androgen receptor binding to canonical bipartite androgen-responsive elements in its proximal promoter region. Our results further revealed that tph1 expression occurs exclusively in pro-opiomelanocortin (pomc)-expressing cells and that the resulting serotonin and its derivative melatonin inhibit the expression of the pituitary hormone genes, fshb, sl and tshb. This suggests that serotonin and/or melatonin synthesized in pomc-expressing cells act in a paracrine manner to suppress pituitary hormone levels. Consistent with these findings and the male-biased expression of tph1, the expression levels of fshb, sl and tshb were all higher in females than in males. Taken together, the male bias in tph1 expression and consequent serotonin/melatonin production presumably contribute to sex differences in the expression of pituitary hormones and ultimately in the physiological functions mediated by them.


Assuntos
Oryzias/fisiologia , Hormônios Hipofisários/metabolismo , Caracteres Sexuais , Animais , Feminino , Masculino , Melatonina/metabolismo , Oryzias/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo
15.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31383257

RESUMO

Male and female animals display innate sex-specific mating behaviors. In teleost fish, altering the adult sex steroid milieu can effectively reverse sex-typical mating behaviors, suggesting remarkable sexual lability of their brains as adults. In the teleost medaka, neuropeptide B (NPB) is expressed female-specifically in the brain nuclei implicated in mating behavior. Here, we demonstrate that NPB is a direct mediator of estrogen action on female mating behavior, acting in a female-specific but reversible manner. Analysis of regulatory mechanisms revealed that the female-specific expression of NPB is dependent on direct transcriptional activation by estrogen via an estrogen-responsive element and is reversed in response to changes in the adult sex steroid milieu. Behavioral studies of NPB knockouts revealed that female-specific NBP mediates female receptivity to male courtship. The female-specific NPB signaling identified herein is presumably a critical element of the neural circuitry underlying sexual dimorphism and lability of mating behaviors in teleosts.


Assuntos
Neuropeptídeos/metabolismo , Oryzias/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Estrogênios/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos
16.
Nat Ecol Evol ; 3(5): 845-852, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962562

RESUMO

To cope with seasonal environmental changes, animals adapt their physiology and behaviour in response to photoperiod. However, the molecular mechanisms underlying these adaptive changes are not completely understood. Here, using genome-wide expression analysis, we show that an uncharacterized long noncoding RNA (lncRNA), LDAIR, is strongly regulated by photoperiod in Japanese medaka fish (Oryzias latipes). Numerous transcripts and signalling pathways are activated during the transition from short- to long-day conditions; however, LDAIR is one of the first genes to be induced and its expression shows a robust daily rhythm under long-day conditions. Transcriptome analysis of LDAIR knockout fish reveals that the LDAIR locus regulates a gene neighbourhood, including corticotropin releasing hormone receptor 2, which is involved in the stress response. Behavioural analysis of LDAIR knockout fish demonstrates that LDAIR affects self-protective behaviours under long-day conditions. Therefore, we propose that photoperiodic regulation of corticotropin releasing hormone receptor 2 by LDAIR modulates adaptive behaviours to seasonal environmental changes.


Assuntos
RNA Longo não Codificante , Animais , Cruzamento , Perfilação da Expressão Gênica , Fotoperíodo , Estações do Ano
17.
Gen Comp Endocrinol ; 284: 113129, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825478

RESUMO

Vertebrate brains are sexually differentiated, giving rise to differences in various physiological and behavioral phenotypes between the sexes. In developing mammals and birds, the neural substrate underlying sex-dependent physiology and behavior undergoes an irreversible process of sexual differentiation due to the effects of perinatal gonadal steroids and sex chromosome complement. The differentiated neural substrate is then activated in the adult by the sex-specific steroid milieu to facilitate the expression of sex-typical phenotypes. However, this well-established concept does not hold for teleost fish, whose sexual phenotypes (behavioral or otherwise) are highly labile throughout life and can be reversed even in adulthood. Indeed, the available evidence suggests that, in teleosts, neither gonadal steroids early in development nor the sex chromosome complement contribute much to brain sexual differentiation; instead, steroids in adulthood serve to both differentiate the neural substrate and activate it to elicit sex-typical phenotypes in a transient and reversible manner. Evidence further suggests that marked sexual dimorphisms and adult steroid-dependent lability in the neural expression of sex steroid receptors constitute the primary molecular basis for sexual differentiation and lability of the teleost brain. The consequent sexually dimorphic but reversible steroid sensitivity in response to the adult steroid milieu may enable the teleost brain to maintain lifelong sexual lability and to undergo phenotypic sex reversal.


Assuntos
Encéfalo/fisiologia , Peixes/fisiologia , Diferenciação Sexual , Animais , Aves/fisiologia , Feminino , Masculino , Mamíferos/fisiologia , Cromossomos Sexuais/genética
18.
Endocrinology ; 160(4): 827-839, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776298

RESUMO

Brain and behavior of teleosts are highly sexually plastic throughout life, yet the underlying neural mechanisms are largely unknown. On examining brain morphology in the teleost medaka (Oryzias latipes), we identified distinctively large neurons in the magnocellular preoptic nucleus that occurred much more abundantly in females than in males. Examination of sex-reversed medaka showed that the sexually dimorphic abundance of these neurons is dependent on gonadal phenotype, but independent of sex chromosome complement. Most of these neurons in females, but none in males, produced neuropeptide B (Npb), whose expression is known to be estrogen-dependent and associated with female sexual receptivity. In phenotypic analysis, the female-specific Npb neurons had a large euchromatic nucleus with an abundant cytoplasm containing plentiful rough endoplasmic reticulum, exhibited increased overall transcriptional activity, and typically displayed a spontaneous regular firing pattern. These phenotypes, which are probably indicative of cellular activation, were attenuated by ovariectomy and restored by estrogen replacement. Furthermore, the population of Npb-expressing neurons emerged in adult males treated with estrogen, not through frequently occurring neurogenesis in the adult teleost brain, but through the activation of preexisting, quiescent male counterpart neurons. Collectively, our results demonstrate that the morphological, transcriptional, and electrophysiological phenotypes of sexually dimorphic preoptic Npb neurons are highly dependent on estrogen and can be switched between female and male patterns. These properties of the preoptic Npb neurons presumably underpin the neural mechanism for sexual differentiation and plasticity of brain and behavior in teleosts.


Assuntos
Encéfalo/metabolismo , Estradiol/farmacologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Núcleo Celular/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Feminino , Masculino , Neurônios/efeitos dos fármacos , Oryzias , Fenótipo
19.
Fish Physiol Biochem ; 45(2): 753-771, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30617941

RESUMO

The localization of gonadotropin-releasing hormone (GnRH) in the brain and pituitary of the self-fertilizing mangrove killifish Kryptolebias marmoratus was examined by immunohistochemistry and in situ hybridization to understand its neuroendocrine system. The genome assembly of K. marmoratus did not have any sequence encoding GnRH1, but sequences encoding GnRH2 (chicken GnRH-II) and GnRH3 (salmon GnRH) were found. Therefore, GnRH1 was identified by in silico cloning. The deduced amino acid sequence of the K. marmoratus GnRH1 (mature peptide) was identical to that of the medaka GnRH. GnRH1 neurons were detected in the ventral part of the preoptic nucleus by immunohistochemistry and in situ hybridization, and GnRH1-immunoreactive (ir) fibers were observed throughout the brain. GnRH1-ir fibers were in close contact with luteinizing hormone (LH)-ir cells in the pituitary using double immunohistochemistry. GnRH2 neurons were detected in the midbrain tegmentum by immunohistochemistry and in situ hybridization. Although GnRH2-ir fibers were observed throughout the brain, they were not detected in the pituitary. GnRH3 neurons were detected in the lateral part of the ventral telencephalic area by both methods. GnRH3-ir fibers were observed throughout the brain, and a few GnRH3-ir fibers were in close contact with LH-ir cells in the pituitary. These results indicate that GnRH1 and possibly GnRH3 are responsible for gonadal maturation through LH secretion and that all three forms of GnRH function as neurotransmitters or neuromodulators in the brain of K. marmoratus.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Peixes Listrados/metabolismo , Hipófise/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Hormônio Liberador de Gonadotropina/química , Organismos Hermafroditas/fisiologia , Humanos , Imuno-Histoquímica , Filogenia , Reprodução/fisiologia
20.
J Comp Neurol ; 524(4): 896-913, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26287569

RESUMO

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.


Assuntos
Diencéfalo/crescimento & desenvolvimento , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Oryzias/crescimento & desenvolvimento , Telencéfalo/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Diencéfalo/citologia , Diencéfalo/metabolismo , Proteínas de Peixes/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal/métodos , Neurônios/metabolismo , Oryzias/anatomia & histologia , Oryzias/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...