Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(12): 5901-5910, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36426992

RESUMO

Under healthy physiological conditions, living organisms possess a variety of antioxidant mechanisms to scavenge overproduced reactive oxygen species (ROS). However, under pathological circumstances, endogenous antioxidant systems may not be adequate to eliminate the excessive amount of oxidants, and thus, a continuous exogenous antioxidant income is required. In this regard, sumac (Rhus coriaria) extract is a good candidate for therapeutic applications, because of its high content of antioxidant polyphenolic compounds. In this work, sumac extract-loaded nanosheets (sumac-nanosheet) have been exploited for loading and controlled release of sumac extract, envisioning topical drug delivery applications. Sumac extract has been obtained through the solvent extraction method, and polymeric nanosheets have been thereafter prepared through the spin coating-assisted layer-by-layer deposition of polycaprolactone (PCL), sumac extract, and poly(d,l-lactic acid) (PDLLA). The collected data show a rich content of the sumac extract in terms of polyphenolic compounds, as well as its strong antioxidant properties. Moreover, for the first time in the literature, we demonstrated the possibility of efficiently loading such extract in polymeric nanosheets and the suitability of this nanoplatform as a reactive oxygen species scavenger in human dermal fibroblasts treated with a pro-oxidant insult.


Assuntos
Rhus , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Extratos Vegetais/farmacologia , Estresse Oxidativo , Fibroblastos
2.
J Nat Prod ; 85(11): 2583-2591, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36223390

RESUMO

Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 µM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 µM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.


Assuntos
Antivirais , Compostos Azo , COVID-19 , Vírus da Influenza A Subtipo H1N1 , SARS-CoV-2 , Streptomyces , Humanos , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Compostos Azo/química , Compostos Azo/metabolismo , Compostos Azo/farmacologia , Resposta ao Choque Térmico , Células HEK293 , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Streptomyces/química , Streptomyces/metabolismo , Células Vero , Chlorocebus aethiops , Cães
3.
Front Plant Sci ; 13: 986600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035696

RESUMO

We aimed to efficiently enhance plant Hg(II) tolerance by the transgenic approach utilizing a bacterial mercury transporter MerC, an Arabidopsis mesophyll specific promoter pRBCS1A, and a vacuolar membrane targeting syntaxin AtVAM3/SYP22. We generated two independent homozygous Arabidopsis pRBCS1A-TCV lines expressing mT-Sapphire-MerC-AtVAM3 under the control of pRBCS1A. Quantitative RT-PCR showed that the transgene was expressed specifically in shoots of pRBCS1A-TCV lines. Confocal analyses further demonstrated the leaf mesophyll specific expression of mT-Sapphire-MerC-AtVAM3. Confocal observation of the protoplast derived from the F1 plants of the pRBCS1A-TCV line and the tonoplast marker line p35S-GFP-δTIP showed the tonoplast colocalization of mT-Sapphire-MerC-AtVAM3 and GFP-δTIP. These results clearly demonstrated that mT-Sapphire-MerC-AtVAM3 expression in Arabidopsis is spatially regulated as designed at the transcript and the membrane trafficking levels. We then examined the Hg(II) tolerance of the pRBCS1A-TCV lines as well as the p35S-driven MerC-AtVAM3 expressing line p35S-CV under the various Hg(II) stress conditions. Short-term (12 d) Hg(II) treatment indicated the enhanced Hg(II) tolerance of both pRBCS1A-TCV and p35S-CV lines. The longer (3 weeks) Hg(II) treatment highlighted the better shoot growth of the transgenic plants compared to the wild-type Col-0 and the pRBCS1A-TCV lines were more tolerant to Hg(II) stress than the p35S-CV line. These results suggest that mesophyll-specific expression of MerC-AtVAM3 is sufficient or even better to enhance the Arabidopsis Hg(II) tolerance. The Hg accumulation in roots and shoots did not differ between the wild-type Col-0 and the MerC-AtVAM3 expressing plants, suggesting that the boosted Hg(II) tolerance of the transgenic lines would be attributed to vacuolar Hg-sequestration by the tonoplast-localized MerC. Further perspectives of the MerC-based plant engineering are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...