Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 29(7): 1713-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22323362

RESUMO

A perceived consequence of a population bottleneck is the erosion of genetic diversity and concomitant reduction in individual fitness and evolutionary potential. Although reduced genetic variation associated with demographic perturbation has been amply demonstrated for neutral molecular markers, the effective management of genetic resources in natural populations is hindered by a lack of understanding of how adaptive genetic variation will respond to population fluctuations, given these are affected by selection as well as drift. Here, we demonstrate that selection counters drift to maintain polymorphism at a major histocompatibility complex (MHC) locus through a population bottleneck in an inbred island population of water voles. Before and after the bottleneck, MHC allele frequencies were close to balancing selection equilibrium but became skewed by drift when the population size was critically low. MHC heterozygosity generally conformed to Hardy-Weinberg expectations except in one generation during the population recovery where there was a significant excess of heterozygous genotypes, which simulations ascribed to strong differential MHC-dependent survival. Low allelic diversity and highly skewed frequency distributions at microsatellite loci indicated potent genetic drift due to a strong founder affect and/or previous population bottlenecks. This study is a real-time examination of the predictions of fundamental evolutionary theory in low genetic diversity situations. The findings highlight that conservation efforts to maintain the genetic health and evolutionary potential of natural populations should consider the genetic basis for fitness-related traits, and how such adaptive genetic diversity will vary in response to both the demographic fluctuations and the effects of selection.


Assuntos
Arvicolinae/genética , Variação Genética , Complexo Principal de Histocompatibilidade , Animais , Feminino , Deriva Genética , Genética Populacional , Masculino , Repetições de Microssatélites , Escócia
2.
Mol Ecol ; 18(1): 80-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19140966

RESUMO

Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy-Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally.


Assuntos
Arvicolinae/genética , Deriva Genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Seleção Genética , Animais , Evolução Molecular , Genótipo , Geografia , Repetições de Microssatélites , Modelos Genéticos , Polimorfismo Conformacional de Fita Simples , Escócia , Análise de Sequência de DNA , Fatores de Tempo
3.
Immunogenetics ; 58(5-6): 390-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738936

RESUMO

In so-called model species, such as human and mouse, genes of the major histocompatibility complex (MHC) are characterized by extremely high levels of polymorphism, and it is considered that such diversity is maintained by balancing selection. ;There is now a recognized need to expand studies into nonmodel species to examine whether high MHC diversity is mirrored in natural populations, and to determine the ecological, ethological, and evolutionary processes that underpin balancing selection. To address such issues, a necessary prerequisite is the ability to characterize diversity at a single, expressed, polymorphic MHC locus on which selection may be acting. Here, we provide the first description of allelic diversity at exon 2 of an MHC class II DRB locus in the European water vole (Arvicola terrestris), characterize variation across four natural populations, and test whether the patterns of variation are consistent with the effects of balancing selection. Using single-strand conformation polymorphism analysis and subsequent DNA sequencing of gel excisions, five DRB alleles were resolved, each with a unique amino acid sequence, among 100 individuals from four geographically distinct populations. Reverse transcription polymerase chain reaction confirmed that the alleles were products from an expressed locus. Intra-allelic amino acid differences were high (10.5-33.3%), and the nonsynonymous substitution rate exceeded the synonymous substitution rate for the functional peptide-binding region (d (N):d (S)=3.91 and P<0.005). Phylogenetic comparison of resolved alleles with closely related homologues indicated that each allele represented a unique lineage preserved across speciation events. These results indicate that balancing selection has maintained diversity of DRB allelic lineages and amino acid function over evolutionary time scales, but may be less effective at preserving alleles in contemporary populations where stochastic microevolutionary processes may dominate.


Assuntos
Arvicolinae/imunologia , Antígenos de Histocompatibilidade Classe II/classificação , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Sequência de Aminoácidos , Animais , Arvicolinae/genética , Frequência do Gene , Genes MHC da Classe II/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...