Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543702

RESUMO

In the event of an outbreak of African swine fever (ASF) in pig farms, the European Union (EU) legislation requires the establishment of a restricted zone, consisting of a protection zone with a radius of at least 3 km and a surveillance zone with a radius of at least 10 km around the outbreak. The main purpose of the restricted zone is to stop the spread of the disease by detecting further outbreaks. We evaluated the effectiveness and necessity of the restricted zone in the Baltic States by looking at how many secondary outbreaks were detected inside and outside the protection and surveillance zones and by what means. Secondary outbreaks are outbreaks with an epidemiological link to a primary outbreak while a primary outbreak is an outbreak that is not epidemiologically linked to any previous outbreak. From 2014 to 2023, a total of 272 outbreaks in domestic pigs were confirmed, where 263 (96.7%) were primary outbreaks and 9 (3.3%) were secondary outbreaks. Eight of the secondary outbreaks were detected by epidemiological enquiry and one by passive surveillance. Epidemiological enquiries are legally required investigations on an outbreak farm to find out when and how the virus entered the farm and to obtain information on contact farms where the ASF virus may have been spread. Of the eight secondary outbreaks detected by epidemiological investigations, six were within the protection zone, one was within the surveillance zone and one outside the restricted zone. Epidemiological investigations were therefore the most effective means of detecting secondary outbreaks, whether inside or outside the restricted zones, while active surveillance was not effective. Active surveillance are legally prescribed activities carried out by the competent authorities in the restricted zones. Furthermore, as ASF is no longer a rare and exotic disease in the EU, it could be listed as a "Category B" disease, which in turn would allow for more flexibility and "tailor-made" control measures, e.g., regarding the size of the restricted zone.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Sus scrofa , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Países Bálticos
2.
Sci Rep ; 14(1): 382, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172492

RESUMO

Targeted search for wild boar carcasses is essential for successful control of African swine fever (ASF) in wild boar populations. To examine whether landscape conditions influence the probability of finding ASF-positive carcasses, this study analyzed Global Positioning System (GPS) coordinates of Latvian wild boar carcasses and hunted wild boar, extracted from the CSF/ASF wild boar surveillance database of the European Union, and random coordinates in Latvia. Geographic information system (GIS) software was used to determine the landscape type and landscape composition of carcass detection sites and to measure distances from the carcasses to nearest waterbodies, forest edges, roads and settlements. The results of the automated measurements were validated by manually analyzing a smaller sample. Wild boar carcasses were found predominantly in forested areas and closer to waterbodies and forest edges than random GPS coordinates in Latvia. Carcasses of ASF-infected wild boar were found more frequently in transitional zones between forest and woodland shrub, and at greater distances from roads and settlements compared to ASF-negative carcasses and random points. This leads to the hypothesis, that ASF-infected animals seek shelter in quiet areas further away from human disturbance. A detailed collection of information on the environment surrounding carcass detection sites is needed to characterize predilection sites more accurately.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Febre Suína Africana/epidemiologia , Letônia/epidemiologia , Análise Espacial , Sus scrofa , Suínos
3.
Pathogens ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242393

RESUMO

In 2020, ASF occurred in wild boars throughout Latvia and Lithuania, and more than 21,500 animals were hunted and tested for the presence of the virus genome and antibodies in the framework of routine disease surveillance. The aim of our study was to re-examine hunted wild boars that tested positive for the antibodies and negative for the virus genome in the blood (n = 244) and to see if the virus genome can still be found in the bone marrow, as an indicator of virus persistence in the animal. Via this approach, we intended to answer the question of whether seropositive animals play a role in the spread of the disease. In total, 2 seropositive animals out of 244 were found to be positive for the ASF virus genome in the bone marrow. The results indicate that seropositive animals, which theoretically could also be virus shedders, can hardly be found in the field and thus do not play an epidemiological role regarding virus perpetuation, at least not in the wild boar populations we studied.

4.
Pathogens ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839627

RESUMO

African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.

5.
Pathogens ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678435

RESUMO

African swine fever (ASF) emerged in Latvia in 2014. In 2020, the virus has been detected in the German federal state, Saxony. In both regions, the virus was probably introduced by infected wild boar coming from affected neighboring countries. As the current ASF control strategy at EU level had not yet been developed at the time of ASF introduction into Latvia, disease control measures in both study areas differed over time. Assessing the course of ASF in Saxony and the implemented control strategies, the first 18 months of the ASF epidemic were epidemiologically compared between Saxony and Latvia. ASF wild boar surveillance data were analyzed and the prevalence of ASF virus-positive wild boar was estimated. For estimating the wild boar density, the numbers of wild boar per km² were calculated for the respective geographical areas. The number of samples collected from hunted wild boar and wild boar found dead was higher in Saxony. The ASF virus prevalence in Latvia was significantly higher than in Saxony, indicating that Saxony has had more time for getting prepared for dealing with an ASF incursion. Experience from other countries and the rapid implementation of new control strategies may have helped Saxony deal with ASF.

6.
Pathogens ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745556

RESUMO

Veterinarians who have conducted numerous investigations of African swine fever outbreaks in pig farms in various European countries over the years shared their experiences during a workshop in Germany in early 2020. One focus was on the so-called "anecdotal information" obtained from farmers, farm workers or other lay people during the outbreak investigations. Discussions revolved around how to correctly interpret and classify such information and how the subjective character of the statements can influence follow-up examinations. The statements of the lay persons were grouped into three categories according to their plausibility: (i) statements that were plausible and prompted further investigation, (ii) statements that were not plausible and could therefore be ignored, and (iii) statements that were rather implausible but should not be ignored completely. The easiest to deal with were statements that could be classified without doubt as important and very plausible and statements that were not plausible at all. Particularly difficult to assess were statements that had a certain plausibility and could not be immediately dismissed out of hand. We aim to show that during outbreak investigations, one is confronted with human subjective stories that are difficult to interpret but still important to understand the overall picture. Here, we present and briefly discuss an arbitrary selection of reports made by lay persons during outbreak investigations.

7.
Pathogens ; 11(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745565

RESUMO

African swine fever (ASF) was first detected in Lithuania, Latvia, and Estonia in 2014 and has since been circulating in the Baltic States with a similar epidemiological course characterized by persistence of the disease in the wild boar population and occasional spill-over infections in domestic pigs. The aim of the present study was to evaluate surveillance data on ASF in wild boar from the three countries to improve our understanding of the course of the disease. ASF surveillance and wild boar population data of the countries were analyzed. In all three countries, a decrease in the prevalence of ASF virus-positive wild boar was observed over time. Although somewhat delayed, an increase in the seroprevalence was seen. At the same time, the wild boar population density decreased significantly. Towards the end of the study period, the wild boar population recovered, and the prevalence of ASF virus-positive wild boar increased again, whereas the seroprevalence decreased. The decreasing virus prevalence has obviously led to virus circulation at a very low level. Together with the decreasing wild boar population density, the detection of ASF-infected wild boar and thus ASF control has become increasingly difficult. The course of ASF and its continuous spread clearly demonstrate the necessity to scrutinize current ASF surveillance and control strategies fundamentally and to consider new transdisciplinary approaches.

8.
EFSA J ; 20(5): e07290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35515335

RESUMO

This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.

9.
Transbound Emerg Dis ; 69(5): e2408-e2417, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35502726

RESUMO

In the case of African swine fever (ASF) outbreaks in pig farms, EU legislation requires a thorough epidemiological investigation to determine, among other tasks, the extent of infection in the affected farm. The main aim of this study was to implement a reliable sampling strategy to quickly obtain an overview of the extent of ASF virus spread in an affected pig farm. We developed and tested a three-step approach: (i) identification of sub-units within the affected farm, (ii) categorization of sub-units, and (iii) targeted selection of animals for testing. We used commercially available lateral flow devices (LFDs) to detect ASF antigen and antibodies under field conditions and compared them with routinely performed laboratory tests (qPCR, ELISA, IPT). The study was conducted in three commercial farms in Latvia that were affected by ASF in July 2020. One of the affected farms was relatively small with only 31 pigs, whereas the other two were large with 1800 and 9800 animals, respectively. The approach proved to be helpful and practical for efficient and reliably assess the ASF situation on the farm and to identify sub-units within a farm where infected animals are present and sub-units which might (still) be free of infection. This important epidemiological information helps to better estimate the high-risk period and to track the potential spread of infection outside the farm. It allows also to prioritize culling and, if appropriate, to pursue a partial culling strategy taking into account the absence of clinical signs, implemented biosecurity measures, quarantine and negative test results, among others. This might be of interest for large commercial farms where the infection was identified very early and has not yet spread widely. Due to its limited sensitivity, the antigen LFD test is useful for testing animals showing signs of disease.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Animais , Anticorpos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fazendas , Suínos , Doenças dos Suínos/epidemiologia
10.
EFSA J ; 19(5): e06572, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976715

RESUMO

An update on the African swine fever (ASF) situation in the 10 affected Member States (MS) in the EU and in two neighbouring countries from the 1 September 2019 until the 31 August 2020 is provided. The dynamics of the proportions of PCR- and ELISA-positive samples since the first ASF detection in the country were provided and seasonal patterns were investigated. The impact of the ASF epidemic on the annual numbers of hunted wild boar in each affected MS was investigated. To evaluate differences in the extent of spread of ASF in the wild boar populations, the number of notifications that could be classified as secondary cases to a single source was calculated for each affected MS and compared for the earliest and latest year of the epidemic in the country. To evaluate possible risk factors for the occurrence of ASFV in wild boar or domestic pigs, a literature review was performed. Risk factors for the occurrence of ASF in wild boar in Romanian hunting grounds in 2019 were identified with a generalised linear model. The probability to find at least one PCR-confirmed ASF case in wild boar in a hunting ground in Romania was driven by environmental factors, wild boar abundance and the density of backyard pigs in the hunting ground area, while hunting-related variables were not retained in the final model. Finally, measures implemented in white zones (ASF-free zones that are geographically adjacent to an area where ASF is present in wild boar) to prevent further spread of ASF were analysed with a spatially, explicit stochastic individual-based model. To be effective, the wild boar population in the white zone would need to be drastically reduced before ASF arrives at the zone and it must be wide enough. To achieve the necessary pre-emptive culling targets of wild boar in the white zone, at the start of the establishment, the white zone should be placed sufficiently far from the affected area, considering the speed of the natural spread of the disease. This spread is faster in denser wild boar populations. After a focal ASF introduction, the white zone is always close to the infection hence pre-emptive culling measures in the white zone must be completed in short term, i.e. in a few months.

11.
EFSA J ; 19(3): e06419, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717352

RESUMO

EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.

12.
Prev Vet Med ; 186: 105229, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33291039

RESUMO

African swine fever (ASF) has massively spread in recent years and threatens the global pig industry. ASF has been present in Latvia since 2014. Hunters play a major role in the implementation of measures to control ASF and in passive disease surveillance. The probability to detect an ASF-positive wild boar is much higher in animals found dead than in hunted animals. Thus, the willingness and the motivation of hunters to support passive surveillance is of utmost importance. Using participatory methods, this study aimed to assess the acceptability of control measures for ASF in wild boar among hunters. In addition, new approaches to increase hunters' motivation to report wild boar found dead were investigated. A total of ten focus group discussions with hunters from different regions in Latvia were conducted. To assess the quantity and quality of contacts between hunters and stakeholders involved in the control of ASF, relation diagrams were used. Using ranking tools, the trust of the participants in stakeholders to implement control measures successfully was evaluated. Defined control measures were presented to the hunters and their acceptability investigated. An impact diagram and a list of defined motivation options for passive surveillance were offered to identify new ways to increase the willingness of hunters to support passive surveillance actively. A satisfactory and regular relationship was identified between the hunters, the Food and Veterinary Service (FVS) and the State Forest Service (SFS). The hunters' trust in these authorities was high. Although there is no vaccine against ASF, hunters were convinced of the potential of vaccination in controlling ASF. However, building fences was considered as useless and ineffective. To increase the willingness of hunters to support passive surveillance, reducing the infection pressure in the forests was regarded as most motivating. Furthermore, hunters would appreciate a decrease in their costs and workload. The study provides new insight into the concerns and experiences of hunters. Including their views and expectations in the further design and implementation of control and surveillance activities may help to improve current efforts to control ASF in wild boar populations. Although representing the perceptions of Latvian hunters, the main conclusions may be adaptable to adjust ASF control and surveillance in other countries.


Assuntos
Febre Suína Africana/psicologia , Febre Suína Africana/prevenção & controle , Animais , Atividades Humanas , Letônia , Sus scrofa , Suínos
13.
Vet Sci ; 7(3)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784575

RESUMO

African swine fever (ASF) was first detected in Latvia in wild boar at the Eastern border in June 2014. Since then ASF has continued to spread in wild boar populations covering almost whole territory of the country. Sporadic outbreaks occurred at the same time in domestic pig holdings located in wild boar infected areas. Here we present the results of the epidemiological investigation in two large commercial farms. Several parameters were analyzed to determine the high risk period (HRP) and to investigate the ASF virus spread within the farm. Clinical data, mortality rates and laboratory results proved to be good indicators for estimating the HRP. The measures for early disease detection, particularly the enhanced passive surveillance that is targeting dead and sick pigs, were analyzed and discussed. Enhanced passive surveillance proved to be a key element to detect ASF at an early stage. The study also showed that ASF virus might spread slowly within a large farm depending mainly on direct contacts between pigs and the level of internal biosecurity. Findings suggest improvements in outbreak prevention, control measures and may contribute to a better understanding of ASF spreading patterns within large pig herds. Culling of all pigs in large commercial farms could be reconsidered under certain conditions.

14.
Transbound Emerg Dis ; 67(6): 2615-2629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32372476

RESUMO

In 2014, African swine fever (ASF) emerged in Latvia for the first time. The majority of cases appeared in wild boar, but the presence of ASF in these animals constitutes a permanent threat to domestic pig holdings. Recent studies have shown an increase in serologically positive and a decrease in PCR-positive ASF cases in wild boar, possibly indicating a decline of ASF incidence. We aimed to investigate the course of the ASF epidemic in wild boar in Latvia, thus attaining further insights into the ASF epidemiology in this country with the goal of assessing the stage of the epidemic. Latvian ASF surveillance data of wild boar were utilized to estimate the seroprevalence and ASF virus (ASFV) prevalence in the wild boar population. Prevalence estimates were obtained for both the eastern and western part of the country and in addition for the 2014/2015 to 2018/2019 hunting seasons. Moreover, prevalence estimates for three different age classes were calculated. An increase in serologically positive yet PCR-negative wild boar samples from active surveillance was identified over time. When comparing the age groups, wild boar younger than one year displayed the ASFV prevalence to be higher than the seroprevalence, whereas older animals shared higher seroprevalence estimates. These findings support the assumption that only a small proportion of affected animals survive an infection, leading to an accumulation of their numbers over time. As a result, ASF elimination in a country with an infected wild boar population could possibly be achieved, if effective wild boar population management and surveillance is maintained and combined with the detection and removal of wild boar carcasses to reduce the viral load in the environment. In addition, the wild boar population should be kept as small as possible to break the ASFV infection cycle.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/epidemiologia , Epidemias/veterinária , Febre Suína Africana/virologia , Animais , Feminino , Letônia/epidemiologia , Masculino , Prevalência , Estudos Soroepidemiológicos , Sus scrofa , Suínos
15.
Transbound Emerg Dis ; 67(5): 1816-1819, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32249548

RESUMO

African swine fever (ASF) in wild boar remains a threat for the global pig industry. Therefore, surveillance is of utmost importance, not only to control the disease but also to detect new introductions as early as possible. Passive surveillance is regarded as the method of choice for an effective detection of ASF in wild boar populations. However, the relevance of wild boar killed through road traffic accidents (RTA) for passive surveillance seems to be unclear. Using comprehensive ASF wild boar surveillance data from Estonia and Latvia, the prevalence of ASF-infected wild boar was calculated and the probability of infection as measured by PCR compared for animals that were hunted, found dead, shot sick or killed in a RTA. The number of samples originating from wild boar killed in a RTA was low and so was the ASF prevalence in these animals. However, the reasons for this low number of RTA animals remain unknown. Therefore, we recommend to sample wild boar killed in a RTA to a greater extent, also to explore, if this approach can increase the detection probability, and to avoid missing disease introduction.

16.
Sci Rep ; 9(1): 4189, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862947

RESUMO

A wild boar population infected with African Swine Fever (ASF) constitutes a constant threat to commercial pig farms and therefore to the economy of the affected country. Currently, ASF is still spreading in several countries and the implementation of intensive measures such as reducing wild boar population densities seems not to be able to stop the further spread of the disease. In addition, there are still substantial knowledge gaps regarding the epidemiology of the disease. To identify risk factors for a higher probability of a wild boar sample being virological or serological positive, comprehensive statistical analyses were performed based on Latvian surveillance data. Using a multivariable Bayesian regression model, the effects of implemented control measures on the proportion of hunted or found dead wild boar or on the estimated virus prevalence were evaluated. None of the control measures applied in Latvia showed a significant effect on the relevant target figure. Also, the estimated periodic prevalence of wild boar that had tested ASF positive by PCR appeared to remain unaffected over time. Therefore, there is an urgent need to reconsider the implemented control measures. The results of this study and the course of ASF in other affected countries, raise the question, whether an endemic situation of ASF in wild boar is reversible.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/epidemiologia , Suínos/virologia , Febre Suína Africana/virologia , Animais , Letônia/epidemiologia , Prevalência
17.
EFSA J ; 16(11): e05494, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32625771

RESUMO

This update on the African swine fever (ASF) outbreaks in the EU demonstrated that out of all tested wild boar found dead, the proportion of positive samples peaked in winter and summer. For domestic pigs only, a summer peak was evident. Despite the existence of several plausible factors that could result in the observed seasonality, there is no evidence to prove causality. Wild boar density was the most influential risk factor for the occurrence of ASF in wild boar. In the vast majority of introductions in domestic pig holdings, direct contact with infected domestic pigs or wild boar was excluded as the route of introduction. The implementation of emergency measures in the wild boar management zones following a focal ASF introduction was evaluated. As a sole control strategy, intensive hunting around the buffer area might not always be sufficient to eradicate ASF. However, the probability of eradication success is increased after adding quick and safe carcass removal. A wider buffer area leads to a higher success probability; however it implies a larger intensive hunting area and the need for more animals to be hunted. If carcass removal and intensive hunting are effectively implemented, fencing is more useful for delineating zones, rather than adding substantially to control efficacy. However, segments of fencing will be particularly useful in those areas where carcass removal or intensive hunting is difficult to implement. It was not possible to demonstrate an effect of natural barriers on ASF spread. Human-mediated translocation may override any effect of natural barriers. Recommendations for ASF control in four different epidemiological scenarios are presented.

18.
EFSA J ; 16(7): e05344, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32625980

RESUMO

The European Commission requested EFSA to compare the reliability of wild boar density estimates across the EU and to provide guidance to improve data collection methods. Currently, the only EU-wide available data are hunting data. Their collection methods should be harmonised to be comparable and to improve predictive models for wild boar density. These models could be validated by more precise density data, collected at local level e.g. by camera trapping. Based on practical and theoretical considerations, it is currently not possible to establish wild boar density thresholds that do not allow sustaining African swine fever (ASF). There are many drivers determining if ASF can be sustained or not, including heterogeneous population structures and human-mediated spread and there are still unknowns on the importance of different transmission modes in the epidemiology. Based on extensive literature reviews and observations from affected Member States, the efficacy of different wild boar population reduction and separation methods is evaluated. Different wild boar management strategies at different stages of the epidemic are suggested. Preventive measures to reduce and stabilise wild boar density, before ASF introduction, will be beneficial both in reducing the probability of exposure of the population to ASF and the efforts needed for potential emergency actions (i.e. less carcass removal) if an ASF incursion were to occur. Passive surveillance is the most effective and efficient method of surveillance for early detection of ASF in free areas. Following focal ASF introduction, the wild boar populations should be kept undisturbed for a short period (e.g. hunting ban on all species, leave crops unharvested to provide food and shelter within the affected area) and drastic reduction of the wild boar population may be performed only ahead of the ASF advance front, in the free populations. Following the decline in the epidemic, as demonstrated through passive surveillance, active population management should be reconsidered.

19.
EFSA J ; 15(11): e05068, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32625356

RESUMO

EFSA assisted four countries in the analysis of epidemiological data on African swine fever (ASF), collected until September 2017. The temporal analysis demonstrated that the average proportions of PCR and antibody-ELISA positive samples from the hunted wild boar remained below 3.9 and 6.6, respectively. A peak in the ASF incidence was observed 6 months after the first observed case, followed by a significant reduction of the number of cases and low levels of African swine fever virus (ASFV) circulation at the end of 38 months follow-up period at different spatial resolutions. The spatial analysis concluded that human-mediated spread of ASFV continues to play a critical role in the ASF epidemiology, despite all measures currently taken. 'Wild boar density', 'total road length' (as proxy for human activity) and 'average suitable wild boar habitat availability' were identified as predictors for the occurrence of ASF in Estonia by a Bayesian hierarchical model, whereas 'wild boar density' and 'density of pig farms' were predictors according to a generalised additive model. To evaluate the preventive strategies proposed in EFSA's Scientific Opinion (2015) to stop the spread of ASFV in the wild boar population, a simulation model, building on expert knowledge and literature was used. It was concluded that reduction of wild boar population and carcass removal to stop the spread of ASFV in the wild boar population are more effective when applied preventively in the infected area. Drastic depopulation, targeted hunting of female wild boar and carcass removal solely implemented as measures to control ASF in the wild boar population need to be implemented in a highly effective manner (at or beyond the limit of reported effectivity in wild boar management) to sustainably halt the spread of ASF.

20.
Res Vet Sci ; 105: 28-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27033903

RESUMO

African swine fever (ASF) virus was introduced in Latvia in June 2014. Thirty-two outbreaks in domestic pigs and 217 cases in wild boar were notified in 2014. Twenty-eight outbreaks (87.5%) were primary outbreaks. The contagiosity within pig herds was low. Failure to use simple biosecurity measures to reduce the chance of virus introduction, for example by inadvertent feeding of locally produced virus contaminated fodder were the main causes for the outbreaks in backyard holdings. The infection in wild boar survived locally in two different areas with a low prevalence and a slow spread. The persistence of the infection in wild boar within an area was most probably linked to wild boar scavenging the carcasses of infected wild boar.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/epidemiologia , Surtos de Doenças/veterinária , Febre Suína Africana/virologia , Animais , Letônia/epidemiologia , Prevalência , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA