Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38812326

RESUMO

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Raios Ultravioleta , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos , Humanos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Vacinas de Produtos Inativados/imunologia
2.
Front Microbiol ; 13: 937192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003947

RESUMO

A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.

3.
iScience ; 25(8): 104759, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854977

RESUMO

The Delta variant had spread globally in 2021 and caused more serious disease than the original virus and Omicron variant. In this study, we investigated several virological features of Delta spike protein (SPDelta), including protein maturation, its impact on viral entry of pseudovirus and cell-cell fusion, and its induction of inflammatory cytokine production in human macrophages and dendritic cells. The results showed that SPΔCDelta exhibited enhanced S1/S2 cleavage in cells and pseudotyped virus-like particles (PVLPs). Further, SPΔCDelta elevated pseudovirus entry in human lung cell lines and significantly enhanced syncytia formation. Furthermore, we revealed that SPΔCDelta-PVLPs had stronger effects on stimulating NF-κB and AP-1 signaling in human monocytic THP1 cells and induced significantly higher levels of proinflammatory cytokine, such as TNF-α, IL-1ß, and IL-6, released from human macrophages and dendritic cells. Overall, these studies provide evidence to support the important role of SPΔCDelta during virus infection, transmission, and pathogenesis.

4.
PLoS One ; 16(6): e0251649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106944

RESUMO

Until now, antiviral therapeutic agents are still urgently required for treatment or prevention of SARS-coronavirus 2 (SCoV-2) virus infection. In this study, we established a sensitive SCoV-2 Spike glycoprotein (SP), including an SP mutant D614G, pseudotyped HIV-1-based vector system and tested their ability to infect ACE2-expressing cells. Based on this system, we have demonstrated that an aqueous extract from the Natural herb Prunella vulgaris (NhPV) displayed potent inhibitory effects on SCoV-2 SP (including SPG614 mutant) pseudotyped virus (SCoV-2-SP-PVs) mediated infections. Moreover, we have compared NhPV with another compound, Suramin, for their anti-SARS-CoV-2 activities and the mode of their actions, and found that both NhPV and Suramin are able to directly interrupt SCoV-2-SP binding to its receptor ACE2 and block the viral entry step. Importantly, the inhibitory effects of NhPV and Suramin were confirmed by the wild type SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) virus infection in Vero cells. Furthermore, our results also demonstrated that the combination of NhPV/Suramin with an anti-SARS-CoV-2 neutralizing antibody mediated a more potent blocking effect against SCoV2-SP-PVs. Overall, by using SARS-CoV-2 SP-pseudotyped HIV-1-based entry system, we provide strong evidence that NhPV and Suramin have anti-SARS-CoV-2 activity and may be developed as a novel antiviral approach against SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Extratos Vegetais/farmacologia , Prunella/química , SARS-CoV-2/efeitos dos fármacos , Suramina/farmacologia , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , COVID-19/genética , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Quimioterapia Combinada , Humanos , Mutação , Ligação Proteica , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Virol ; 95(15): e0236820, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011553

RESUMO

The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , HIV-1/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CCL3/imunologia , Chlorocebus aethiops , Ebolavirus/imunologia , Feminino , Células HEK293 , Infecções por HIV/prevenção & controle , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1 , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero , Vírus da Estomatite Vesicular Indiana/genética
6.
Microorganisms ; 7(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569539

RESUMO

In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...