RESUMO
CONTEXT: Compared with the relatively benign effects of increased subcutaneous adipose tissue (SAT), increased visceral adipose tissue (VAT) volume is a causal risk factor for hypertension, hyperlipidemia, type 2 diabetes, and cardiovascular disease. In rodents, increased VAT volume and triglyceride density and ectopic lipid accumulation in kidneys and liver have been induced by alterations in the gut microbiome. However, few studies have characterized these relationships in humans. OBJECTIVE: To evaluate the tissue triglyceride content of VAT and SAT, liver, kidneys, and pancreas in male and female adults and assess associations with markers of glucose tolerance, serum insulin, and lipids and characteristics of the gut microbiome. METHODS: Cross-sectional observational study of healthy human adults (n = 60) at a clinical research center. Body mass index (BMI), body composition, and oral glucose tolerance were assessed. Microbiome analysis was conducted on stool samples using 16S rRNA v3 amplicon sequencing. The triglyceride content of VAT, SAT, liver, kidney and pancreas were determined by assessing proton density fat fraction (PDFF) with magnetic resonance imaging (MRI). RESULTS: Higher VAT PDFF and the ratio of VAT to SAT PDFF were related to higher BMI, HbA1c, HOMA-IR, non-high-density lipoprotein cholesterol, plasma triglycerides, low-density lipoprotein (LDL) cholesterol, and lower high-density lipoprotein (HDL) cholesterol. A higher VAT PDFF and VAT to SAT PDFF ratio were associated with lower alpha diversity and altered beta diversity of the gut microbiome. Differences in VAT were associated with higher relative abundance of the phylum Firmicutes, lower relative abundance of the phylum Bacteroidetes, and enrichment of the bacterial genera Dorea, Streptococcus, and Solobacterium. CONCLUSION: VAT PDFF measured with MRI is related to impaired glucose homeostasis, dyslipidemia, and differences in the gut microbiome, independently of the total body fat percentage.
Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Adulto , Humanos , Masculino , Feminino , Gordura Intra-Abdominal/diagnóstico por imagem , Gordura Intra-Abdominal/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , RNA Ribossômico 16S , Triglicerídeos , HDL-Colesterol , Glucose/metabolismo , Tecido AdiposoRESUMO
Childhood obesity is a growing worldwide problem. In adults, lower cold-induced brown adipose tissue (BAT) activity is linked to obesity and metabolic dysfunction; this relationship remains uncertain in children. In this cross-sectional study, we compared cold-induced supraclavicular (SCV) BAT activity (percent change in proton density fat fraction [PDFF]) within the SCV region after 1 h of whole-body cold exposure (18°C), using MRI in 26 boys aged 8-10 years: 13 with normal BMI and 13 with overweight/obesity. Anthropometry, body composition, hepatic fat, visceral adipose tissue (VAT), and pre- and postcold PDFF of the subcutaneous adipose tissue (SAT) in the posterior neck region and the abdomen were measured. Boys with overweight/obesity had lower cold-induced percent decline in SCV PDFF compared with those with normal BMI (1.6 ± 0.8 vs. 4.7 ± 1.2%, P = 0.044). SCV PDFF declined significantly in boys with normal BMI (2.7 ± 0.7%, P = 0.003) but not in boys with overweight/obesity (1.1 ± 0.5%, P = 0.053). No cold-induced changes in the PDFF of either neck SAT (-0.89 ± 0.7%, P = 0.250, vs. 0.37 ± 0.3%, P = 0.230) or abdominal SAT (-0.39 ± 0.5%, P = 0.409, and 0.25 ± 0.2%, P = 0.139, for normal BMI and overweight/obesity groups, respectively) were seen. The cold-induced percent decline in SCV PDFF was inversely related to BMI (r = -0.39, P = 0.047), waist circumference (r = -0.48, P = 0.014), and VAT (r = -0.47, P = 0.014). Thus, in young boys, as in adults, BAT activity is lower in those with overweight/obesity, suggesting that restoring activity may be important for improving metabolic health.
Assuntos
Tecido Adiposo Marrom , Obesidade Infantil , Tecido Adiposo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Adulto , Antropometria , Criança , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Masculino , Sobrepeso/metabolismo , Obesidade Infantil/metabolismo , PrótonsRESUMO
In rodents, lower brown adipose tissue (BAT) activity is associated with greater liver steatosis and changes in the gut microbiome. However, little is known about these relationships in humans. In adults (n = 60), we assessed hepatic fat and cold-stimulated BAT activity using magnetic resonance imaging and the gut microbiota with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity through the microbiota. Individuals with NAFLD (n = 29) have lower BAT activity than those without, and BAT activity is inversely related to hepatic fat content. BAT activity is not related to the characteristics of the fecal microbiota and is not transmissible through fecal transplantation to mice. Thus, low BAT activity is associated with higher hepatic fat accumulation in human adults, but this does not appear to have been mediated through the gut microbiota.
Assuntos
Tecido Adiposo Marrom/patologia , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Adiposidade , Adolescente , Adulto , Animais , Temperatura Baixa , Feminino , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Análise Multivariada , Adulto JovemRESUMO
CONTEXT: In rodents, cold exposure induces the activation of brown adipose tissue (BAT) and the induction of intracellular triacylglycerol (TAG) lipolysis. However, in humans, the kinetics of supraclavicular (SCV) BAT activation and the potential importance of TAG stores remain poorly defined. OBJECTIVE: To determine the time course of BAT activation and changes in intracellular TAG using MRI assessment of the SCV (i.e., BAT depot) and fat in the posterior neck region (i.e., non-BAT). DESIGN: Cross-sectional. SETTING: Clinical research center. PATIENTS OR OTHER PARTICIPANTS: Twelve healthy male volunteers aged 18 to 29 years [body mass index = 24.7 ± 2.8 kg/m2 and body fat percentage = 25.0% ± 7.4% (both, mean ± SD)]. INTERVENTIONS: Standardized whole-body cold exposure (180 minutes at 18°C) and immediate rewarming (30 minutes at 32°C). MAIN OUTCOME MEASURES: Proton density fat fraction (PDFF) and T2* of the SCV and posterior neck fat pads. Acquisitions occurred at 5- to 15-minute intervals during cooling and subsequent warming. RESULTS: SCV PDFF declined significantly after only 10 minutes of cold exposure [-1.6% (SE: 0.44%; P = 0.007)] and continued to decline until 35 minutes, after which time it remained stable until 180 minutes. A similar time course was also observed for SCV T2*. In the posterior neck fat (non-BAT), there were no cold-induced changes in PDFF or T2*. Rewarming did not result in a change in SCV PDFF or T2*. CONCLUSIONS: The rapid cold-induced decline in SCV PDFF suggests that in humans BAT is activated quickly in response to cold and that TAG is a primary substrate.
RESUMO
The activation of brown adipose tissue (BAT) is associated with reductions in circulating lipids and glucose in rodents and contributes to energy expenditure in humans indicating the potential therapeutic importance of targetting this tissue for the treatment of a variety of metabolic disorders. In order to evaluate the therapeutic potential of human BAT, a variety of methodologies for assessing the volume and metabolic activity of BAT are utilized. Cold exposure is often utilized to increase BAT activity but inconsistencies in the characteristics of the exposure protocols make it challenging to compare findings. The metabolic activity of BAT in response to cold exposure has most commonly been measured by static positron emission tomography of 18F-fluorodeoxyglucose in combination with computed tomography (18F-FDG PET-CT) imaging, but recent studies suggest that under some conditions this may not always reflect BAT thermogenic activity. Therefore, recent studies have used alternative positron emission tomography and computed tomography (PET-CT) imaging strategies and radiotracers that may offer important insights. In addition to PET-CT, there are numerous emerging techniques that may have utility for assessing BAT metabolic activity including magnetic resonance imaging (MRI), skin temperature measurements, near-infrared spectroscopy (NIRS) and contrast ultrasound (CU). In this review, we discuss and critically evaluate the various methodologies used to measure BAT metabolic activity in humans and provide a contemporary assessment of protocols which may be useful in interpreting research findings and guiding the development of future studies.
Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/anatomia & histologia , Humanos , Hipotermia Induzida , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Temperatura Cutânea/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
Premature birth in conjunction with extremely low birth weight (<1 kg, ELBW) is associated with insulin resistance and increased cardiometabolic health risk compared to birth at full term with normal birth weight (NBW). However, little is known regarding the biologic mediators of these effects. Abdominal and ectopic lipid accumulation is linked to insulin resistance and metabolic dysfunction, yet whether ELBW survivors are predisposed to aberrant lipid deposition in adulthood is unknown. We used magnetic resonance imaging in a cohort of 16 NBW and 29 ELBW participants to determine if ELBW survivors have differences in pancreatic, hepatic, subcutaneous and visceral fat distribution compared to NBW participants. ELBW individuals had a higher proportion of liver and pancreatic fat compared to NBW subjects (P < 0.05). Abdominal subcutaneous fat, but not visceral fat, area was higher in ELBW survivors compared to NBW individuals. In multivariate analyses, tissue fat measures were most highly related to BMI and sex, but not preterm birth. This work highlights that fat deposition is enhanced in adults born preterm and suggests that ectopic fat accretion driven by their relatively greater adiposity may contribute to the higher rates of metabolic dysfunction seen in ELBW survivors.