Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3490-3497, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27639541

RESUMO

BACKGROUND: The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. METHODS: A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. RESULTS: S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. CONCLUSION: S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. GENERAL SIGNIFICANCE: Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.


Assuntos
Esôfago/metabolismo , Inflamação/patologia , Proteínas de Protozoários/metabolismo , Proteínas S100/metabolismo , Schistosoma mansoni/metabolismo , Processamento Alternativo/genética , Animais , Dicroísmo Circular , Cricetinae , Eletroforese em Gel de Poliacrilamida , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido
2.
Biophys J ; 104(11): 2512-20, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23746524

RESUMO

The micro-exon genes (MEG) of Schistosoma mansoni, a parasite responsible for the second most widely spread tropical disease, code for small secreted proteins with sequences unique to the Schistosoma genera. Bioinformatics analyses suggest the soluble domain of the MEG-14 protein will be largely disordered, and using synchrotron radiation circular dichroism spectroscopy, its secondary structure was shown to be essentially completely unfolded in aqueous solution. It does, however, show a strong propensity to fold into more ordered structures under a wide range of conditions. Partial folding was produced by increasing temperature (in a reversible process), contrary to the behavior of most soluble proteins. Furthermore, significant folding was observed in the presence of negatively charged lipids and detergents, but not in zwitterionic or neutral lipids or detergents. Absorption onto a surface followed by dehydration stimulated it to fold into a helical structure, as it did when the aqueous solution was replaced by nonaqueous solvents. Hydration of the dehydrated folded protein was accompanied by complete unfolding. These results support the identification of MEG-14 as a classic intrinsically disordered protein, and open the possibility of its interaction/folding with different partners and factors being related to multifunctional roles and states within the host.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Detergentes/metabolismo , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...