RESUMO
Two Legionella-like isolates, 8cVS16T and 9fVS26, were isolated from a water distribution system (WDS) in a healthcare facility. Cells were Gram- and Ziehl Neelsen-stain-negative, rod-shaped, motile, and exhibited a blue-white fluorescence under Wood's lamp at 365 nm. The strains grew in a range of 32-37 °C on BCYE with L-cysteine (Cys+), GVPC, and MWY agar medium, with a positive reaction for oxidase, catalase, and gelatinase. The dominant fatty acids were summed features 3 (C16:1ω7c/C16:1ω6c) (27.7%), C16:0 iso (17.5%), and C16:0 (16.3%), and Q13 as the major ubiquinone. The mip and rpoB gene sequences showed a similarity of 96.7% and 92.4%, with L. anisa (ATCC 35292T). The whole genomes sequencing (WGS) performed displayed a GC content of 38.21 mol% for both. The digital DNA-DNA hybridization (dDDH) analysis demonstrated the separation of the two strains from the phylogenetically most related L. anisa (ATCC 35292T), with ≤43% DNA-DNA relatedness. The Average Nucleotide Identity (ANI) between the two strains and L. anisa (ATCC 35292T) was 90.74%, confirming that the two isolates represent a novel species of the genus Legionella. The name proposed for this species is Legionella resiliens sp. nov., with 8cVS16T (=DSM 114356T = CCUG 76627T) as the type strain.
RESUMO
Uncommon Salmonella Infantis variants displaying only flagellar antigens phenotypically showed identical incomplete antigenic formula but differed by molecular serotyping. Although most formed rough colonies, all shared antimicrobial resistances and the presence of usg gene with wild-type Salmonella Infantis. Moreover, they were undistinguishable wild-type Salmonella Infantis by whole-genome sequencing.
Assuntos
Cadeia Alimentar , Aves Domésticas , Animais , Itália/epidemiologia , Salmonella/genética , SorotipagemRESUMO
BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.
Assuntos
Aminoaciltransferases , Cefalosporinas , Streptococcus suis , Animais , Suínos , Penicilinas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Streptococcus suis/genética , Proteínas de Bactérias/genética , Streptococcus pneumoniae/genética , Sorogrupo , Aminoaciltransferases/genética , Testes de Sensibilidade Microbiana , Resistência às Penicilinas/genética , Genômica , Ampicilina , Células Clonais , Antibacterianos/farmacologiaRESUMO
Since its outbreak, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread rapidly, causing the Coronavirus Disease 19 (COVID-19) pandemic. Even with the vaccines' administration, the virus continued to circulate due to inequal access to prevention and therapeutic measures in African countries. Information about COVID-19 in Africa has been limited and contradictory, and thus regional studies are important. On this premise, we conducted a genomic surveillance study about COVID-19 lineages circulating in Bangui, Central African Republic (CAR). We collected 2687 nasopharyngeal samples at four checkpoints in Bangui from 2 to 22 July 2021. Fifty-three samples tested positive for SARS-CoV-2, and viral genomes were sequenced to look for the presence of different viral strains. We performed phylogenetic analysis and described the lineage landscape of SARS-CoV-2 circulating in the CAR along 15 months of pandemics and in Africa during the study period, finding the Delta variant as the predominant Variant of Concern (VoC). The deduced aminoacidic sequences of structural and non-structural genes were determined and compared to reference and reported isolates from Africa. Despite the limited number of positive samples obtained, this study provides valuable information about COVID-19 evolution at the regional level and allows for a better understanding of SARS-CoV-2 circulation in the CAR.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteoma , COVID-19/epidemiologia , República Centro-Africana/epidemiologia , Filogenia , Genômica , AntiviraisRESUMO
Introduction: The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods: Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion: Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Humanos , Sorogrupo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fenótipo , Salmonella/genética , Itália , AminoglicosídeosRESUMO
Cetacean morbillivirus (CeMV) is an enveloped, non-segmented, negative-stranded RNA virus that infects marine mammals, spreading across species and causing lethal disease outbreaks worldwide. Among the eight proteins encoded by the CeMV genome, the haemagglutinin (H) glycoprotein is responsible for the virus attachment to host cell receptors. CeMV H represents an attractive target for antiviral and diagnostic research, yet the elucidation of the molecular mechanisms underlying its role in infection and inter-species transmission was hampered thus far due to the unavailability of recombinant versions of the protein. Here we present the cloning, expression and purification of a recombinant CeMV H ectodomain (rH-ecto), providing an initial characterization of its biophysical and structural properties. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (PAGE) combined to Western blot analysis and periodic acid Schiff assay showed that CeMV rH-ecto is purifiable at homogeneity from insect cells as a secreted, soluble and glycosylated protein. Miniaturized differential scanning fluorimetry, Blue Native PAGE and size exclusion chromatography coupled to multiangle light scattering revealed that CeMV rH-ecto is globularly folded, thermally stable and exists in solution in the oligomeric states of dimer and multiple of dimers. Furthermore, negative stain electron microscopy single particle analysis allowed us to delineate a low-resolution molecular architecture of the CeMV rH-ecto dimer, which recapitulates native assemblies from other morbilliviral H proteins, such as those from measles virus and canine distemper virus. This set of experiments by orthogonal techniques validates the CeMV rH-ecto as an experimental model for future biochemical studies on its structure and functions.
RESUMO
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
RESUMO
Tetrodotoxins (TTXs) are potent neurotoxins named after the Tetraodontidae fish family. The ingestion of TTX-contaminated flesh can cause neurotoxic symptoms and can lead to death. In 2017 symptoms the European Food Safety Authority (EFSA) recognized the threat to food safety resulting from TTX exposure via food consumption and, thus, proposed a safety limit of 44 µg/kg of TTX in marine gastropods and bivalves. To date, however, TTXs have not yet been included in the list of biotoxins to be monitored within the European Union, even though, in a few cases, levels of TTX found were higher than the EFSA limit. The origin of TTX production is debated and the roles of both biotic and abiotic factors on TTX-mediated toxic events remain unclear. In order to meet these knowledge requests the present study was aimed to investigate the role of seawater temperature, pH, water conductivity, and oxygen saturation, along with the marine phytoplankton community and the bacterial community of mussels and oysters on the accumulation of TTX and analogues in the bivalves. Abiotic parameters were measured by means of a multi-parametric probe, phytoplankton community was analyzed by optic microscopy while microbial community was described by amplicon metataxonomic sequencing, TTXs concentration in the collected matrices were measured by HILIC-MS/MS. A possible role of seawater pH and temperature, among the investigated abiotic factors, in regulating the occurrence of TTXs was found. Regarding biotic variables, a possible influence of Vibrio, Shewanella and Flavobacteriaceae in the occurrence of TTXs was found. Concurrently, Prorocentrum cordatum cell numbers were correlated to the incidence of TTX in mussels. The results herein collected suggest that environmental variables play a consistent part in the occurrence of TTX in the edible bivalve habitats, and there are also indications of a potential role played by specific bacteria taxa in association with phytoplankton.
Assuntos
Bivalves , Espectrometria de Massas em Tandem , Animais , Tetrodotoxina/toxicidade , Compreensão , Neurotoxinas , FitoplânctonRESUMO
Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.
Assuntos
DNA Antigo , Lagomorpha , Animais , Filogenia , Evolução Biológica , ArqueologiaRESUMO
Introduction: Whole genome sequencing (WGS) is increasingly used for characterizing foodborne pathogens and it has become a standard typing technique for surveillance and research purposes. WGS data can help assessing microbial risks and defining risk mitigating strategies for foodborne pathogens, including Salmonella enterica. Methods: To test the hypothesis that (combinations of) different genes can predict the probability of infection [P(inf)] given exposure to a certain pathogen strain, we determined P(inf) based on invasion potential of 87 S. enterica strains belonging to 15 serovars isolated from animals, foodstuffs and human patients, in an in vitro gastrointestinal tract (GIT) model system. These genomes were sequenced with WGS and screened for genes potentially involved in virulence. A random forest (RF) model was applied to assess whether P(inf) of a strain could be predicted based on the presence/absence of those genes. Moreover, the association between P(inf) and biofilm formation in different experimental conditions was assessed. Results and Discussion: P(inf) values ranged from 6.7E-05 to 5.2E-01, showing variability both among and within serovars. P(inf) values also varied between isolation sources, but no unambiguous pattern was observed in the tested serovars. Interestingly, serovars causing the highest number of human infections did not show better ability to invade cells in the GIT model system, with strains belonging to other serovars displaying even higher infectivity. The RF model did not identify any virulence factor as significant P(inf) predictors. Significant associations of P(inf) with biofilm formation were found in all the different conditions for a limited number of serovars, indicating that the two phenotypes are governed by different mechanisms and that the ability to form biofilm does not correlate with the ability to invade epithelial cells. Other omics techniques therefore seem more promising as alternatives to identify genes associated with P(inf), and different hypotheses, such as gene expression rather than presence/absence, could be tested to explain phenotypic virulence [P(inf)].
RESUMO
OBJECTIVES: To investigate the optrA-carrying genetic elements and their transferability in two linezolid-resistant Streptococcus dysgalactiae subsp. equisimilis (SDSE) strains of swine origin. METHODS: SDSE strains (V220 and V1524) were phenotypically and genotypically characterized. Transferability of oxazolidinone resistance genes (filter mating), genetic elements and relatedness between isolates (WGS) were analysed. Excision of the genetic elements was assayed by inverse PCR. RESULTS: SDSE isolates were resistant to chloramphenicol, florfenicol and linezolid, but susceptible to tedizolid and both carried the optrA gene.In SDSE V220 optrA was located on a 72.9-kb ICESdyV220 inserted in the 3' end of the chromosomal rum gene. It was 94%-96% identical (coverage, from 31% to 61%) to other optrA-carrying ICEs. In-depth ICESdyV220 sequence analysis revealed that optrA was carried by an IMESdyV220 (17.9 kb), also containing the tet(O/W/32/O) gene. Inverse PCR assays excluded the ICESdyV220 mobility. In SDSE V1524, optrA was carried by the ΦSdyV1524 prophage, integrated near the 5' end of the chromosomal had gene, showing a genetic organization similar to that of other streptococcal phage. Conjugation and transduction assays failed to demonstrate the optrA transferability to streptococcal recipients. V220 and V1524 belonged to two novel sequence types (ST704 and ST634, respectively). CONCLUSIONS: To the best of our knowledge, this is the first identification of the optrA gene on a prophage and an ICE in SDSE isolates from swine brain.These findings are consistent with the current belief in the key role of bacteriophages and ICEs in the streptococcal evolution and adaptation.
Assuntos
Antibacterianos , Prófagos , Animais , Suínos , Linezolida/farmacologia , Antibacterianos/farmacologia , Prófagos/genética , Streptococcus/genética , Farmacorresistência Bacteriana/genéticaRESUMO
We report the genome sequence of a Salmonella enterica subsp. enterica serovar Bispebjerg strain that was isolated from a turkey flock in 2011. The genome analysis of the strain, a rare and multihost serovar, revealed its pathogenic potential due to antimicrobial resistance and a plethora of Salmonella pathogenicity islands and virulence factors.
RESUMO
Giardia duodenalis (Giardia) is a worldwide cause of acute diarrheal disease both in humans and animals. The primary aim of this study was to investigate possible variations in gut microbiota in a population of asymptomatic dogs (n = 31), naturally infected or not by Giardia. Gut microbiota and the hematological, biochemical, and fecal parameters related to intestinal function were investigated. Giardia infection was associated with a significant shift of beta diversity, showing a relevant reduction of Gammaproteobacteria and an increase of Fusobacteria in male-positive dogs if compared with negatives. A significant imbalance of different bacterial taxa, with particular reference to the Erysipelotrichales, Lactobacillales, Clostridiales, and Burkholderiales orders, was observed, with the first two being higher in Giardia-positive dogs. Giardia-positive males displayed significantly higher values of cCRP than negative males as well as positive females, supporting the presence of a pro-inflammatory state. Taken together, these results indicate that the presence of Giardia does not substantially modify the microbial ecology of the intestine nor the hematological markers of disease. Thus treatments against Giardia should be considered with caution in asymptomatic subjects.
RESUMO
OBJECTIVES: This pilot study provides a multidisciplinary investigation to monitor livestock-wildlife interface. Ecological data, microbiological investigations, and whole genome sequencing were used to characterize eight bacterial isolates obtained from sympatric domestic and wild ruminants in Maiella National Park (Italy) in terms of genetic patterns of antimicrobial resistance. METHODS: Using selective culturing of fresh fecal samples of monitored and georeferenced populations of Apennine chamois, goats, red deer, and sheep, Escherichia coli, Enterococcus faecium, and Enterococcus faecalis isolates were isolated and subjected to minimum inhibitory concentration determination and whole genome sequencing. RESULTS: The analyzed isolates showed phenotypic and genotypic resistance to tetracycline and critically important antibiotics such as linezolid and carbapenems. Virulence genes related to biofilm regulation and Shiga toxins were also detected. Furthermore, serotypes related to nosocomial infections, harbouring plasmids recognized as important mobile resistance gene transmitters, were identified. CONCLUSIONS: This multidisciplinary pilot study represents a promising initial step to identify the environmental drivers and the transmission routes of antimicrobial resistance and virulence factors, providing new data on bacteria from rare and endangered species such as Apennine chamois.
Assuntos
Cervos , Rupicapra , Animais , Ovinos , Enterococcus , Animais Selvagens/microbiologia , Escherichia coli , Gado , Projetos Piloto , Rupicapra/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Cabras , Sequenciamento Completo do GenomaRESUMO
This in vivo study in mice addresses the relationship between the biodiversity of the microbiota and the levels of S100B, a protein present in enteroglial cells, but also in foods such as milk. A positive significant correlation was observed between S100B levels and Shannon values, which was reduced after treatment with Pentamidine, an inhibitor of S100B function, indicating that the correlation was influenced by the modulation of S100B activity. Using the bootstrap average method based on the distribution of the S100B concentration, three groups were identified, exhibiting a significant difference between the microbial profiles. Operational taxonomic units, when analyzed by SIMPER analysis, showed that genera regarded to be eubiotic were mainly concentrated in the intermediate group, while genera potentially harboring pathobionts often appeared to be more concentrated in groups where the S100B amounts were very low or high. Finally, in a pilot experiment, S100B was administered orally, and the microbial profiles appeared to be modified accordingly. These data may open novel perspectives involving the possibility of S100B-mediated regulation in the intestinal microbiota.
Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Pentamidina/farmacologia , Biodiversidade , RNA Ribossômico 16S/genética , Subunidade beta da Proteína Ligante de Cálcio S100RESUMO
Mitochondrial DNA (mtDNA) plays a crucial role in the development of a competent oocyte. Indeed, mtDNA alterations may predispose to chromosome nondisjunction, resulting in infertility due to a reduced vitality and quality of oocytes and embryos. In this methods paper, the multiple displacement amplification approach was applied in combination with next-generation sequencing (NGS) to amplify and sequence, in single-end, the entire mtDNA of single human oocytes to directly construct genomic NGS libraries, and subsequently, to highlight and quantify the mutations they presented. The bioinformatic workflow was carried out with a specific ad hoc developed in-house software. This approach proved to be sensitive and specific, also highlighting the mutations present in heteroplasmy, showing deletion, insertion or substitution mutations in the genes involved in the respiratory chain, even if the found variants were benign or of uncertain meaning. The analysis of mtDNA mutations in the oocyte could provide a better understanding of specific genetic abnormalities and of their possible effect on oocyte developmental competence. This study shows how this approach, based on a massive parallel sequencing of clonally amplified DNA molecules, allows to sequence the entire mitochondrial genome of single oocytes in a short time and with a single analytical run and to verify mtDNA mutations.
Assuntos
Heteroplasmia , Mitocôndrias , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Oócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
Ebola virus (EBOV) and Marburg virus (MARV) are highly pathogenic viruses in humans, against which approved antivirals are lacking. During EBOV and MARV infection, coiled-coil mediated oligomerization is essential for the virion protein 35 (VP35) polymerase co-factor function and type I interferon antagonism, making VP35 coiled-coil an elective drug target. We established a tripartite split-green fluorescent protein (GFP) fluorescence complementation (FC) system based on recombinant GFP-tagged EBOV and MARV VP35, which probes VP35 coiled-coil assembly by monitoring fluorescence on E. coli colonies, or in vitro in 96/384-multiwell. Oligomerization-defective VP35 mutants showed that correct coiled-coil knobs-into-holes pairing within VP35 oligomer is pre-requisite for GFP tags and GFP detector to reconstitute fluorescing full-length GFP. The method was validated by screening a small compound library, which identified Myricetin and 4,5,6,7-Tetrabromobenzotriazole as inhibitors of EBOV and MARV VP35 oligomerization-dependent FC with low-micromolar IC50 values. These findings substantiate the VP35 coiled-coil value as antiviral target.
RESUMO
The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.