Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 12(1): coae045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974502

RESUMO

In the age of global climate change, extreme climatic events are expected to increase in frequency and severity. Animals will be forced to cope with these novel stressors in their environment. Glucocorticoids (i.e. 'stress' hormones) facilitate an animal's ability to cope with their environment. To date, most studies involving glucocorticoids focus on the immediate physiological effects of an environmental stressor on an individual, few studies have investigated the long-term physiological impacts of such stressors. Here, we tested the hypothesis that previous exposure to an environmental stressor will impart lasting consequences to an individual's glucocorticoid levels. In semi-arid environments, variable rainfall drives forage availability for herbivores. Reduced seasonal precipitation can present an extreme environmental stressor potentially imparting long-term impacts on an individual's glucocorticoid levels. We examined the effects of rainfall and environmental characteristics (i.e. soil and vegetation attributes) during fawn-rearing (i.e. summer) on subsequent glucocorticoid levels of female white-tailed deer (Odocoileus virginianus) in autumn. We captured 124 adult (≥2.5-year-old) female deer via aerial net-gunning during autumn of 2015, 2016 and 2021 across four populations spanning a gradient of environmental characteristics and rainfall in the semi-arid environment of South Texas, USA. We found for every 1 cm decrease in summer rainfall, faecal glucocorticoid levels in autumn increased 6.9%, but only in lactating females. Glucocorticoid levels in non-lactating, female deer were relatively insensitive to environmental conditions. Our study demonstrates the long-lasting effects of environmental stressors on an individual's glucocorticoid levels. A better understanding of the long-term effects stressors impart on an individual's glucocorticoid levels will help to evaluate the totality of the cost of a stressor to an individual's welfare and predict the consequences of future climate scenarios.

2.
Ecol Evol ; 13(11): e10668, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920775

RESUMO

Plant species richness is an important property of ecosystems that is altered by grazing. In a semiarid environment, we tested the hypotheses that (1) small-scale herbaceous plant species richness declines linearly with increasing grazing intensity by large ungulates, (2) precipitation and percent sand interact with grazing intensity, and (3) response of herbaceous plant species richness to increasing intensity of ungulate grazing varies with patch productivity. During January-March 2012, we randomly allocated 50, 1.5-m × 1.5-m grazing exclosures within each of six 2500 ha study sites across South Texas, USA. We counted the number of herbaceous plant species and harvested vegetation in 0.25-m2 plots within exclosures (ungrazed control plots) and in the grazed area outside the exclosures (grazed treatment plots) during October-November 2012-2019. We estimated percent use (grazing intensity) based on the difference in herbaceous plant standing crop between control plots and treatment plots. We selected the negative binomial regression model that best explained the relationship between grazing intensity and herbaceous plant species richness using the Schwarz-Bayesian information criterion. After accounting for the positive effect of precipitation and percent sand on herbaceous plant species richness, species richness/0.25 m2 increased slightly from 0% to 30% grazing intensity and then declined with increasing grazing intensity. Linear and quadratic responses of herbaceous plant species richness to increasing grazing intensity were greater for the least productive patches (<15.7 g/0.25 m2) than for productive patches (≥15.7 g/0.25 m2). Our results followed the pattern predicted by the intermediate disturbance hypothesis model for the effect of grazing intensity on small-scale herbaceous plant species richness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...