RESUMO
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone-the interstitial region between forest types. Ecotones are hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent ecosystems, with their locations determined by species' physiological limits. In this review, we describe how studying ecotones can provide key indicators for monitoring the state of Neotropical forests from organisms to ecosystems. We first describe how ecotones have been studied in the past and summarize our current understanding of tropical ecotones. Next, we provide three example lines of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based forest dynamics plot data, among others, for understanding these important systems.
RESUMO
In stands with a broad range of diameters, a small number of very large trees can disproportionately influence stand basal area and transpiration (Et). Sap flow-based Et estimates may be particularly sensitive to large trees due to nonlinear relationships between tree-level water use (Q) and tree diameter at breast height (DBH). Because Q is typically predicted on the basis of DBH and sap flow rates measured in a subset of trees and then summed to obtain Et, we assessed the relative importance of DBH and sap flow variables (sap velocity, Vs, and sapwood depth, Rs) in determining the magnitude of Et and its dependence on large trees in a tropical montane forest ecosystem. Specifically, we developed a data-driven simulation framework to vary the relationship between DBH and Vs and stand DBH distribution and then calculate Q, Et and the proportion of Et contributed by the largest tree in each stand. Our results demonstrate that variation in how Rs is determined in the largest trees can alter estimates up to 26% of Et while variation in how Vs is determined can vary results by up to 132%. Taken together, these results highlight a great need to expand our understanding of water transport in large trees as this hinders our ability to predict water fluxes accurately from stand to catchment scales.