Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12836, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834660

RESUMO

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases,  along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.


Assuntos
Reatores Biológicos , Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Desinfetantes/farmacologia , Fluorescência , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 31(9): 13706-13721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265580

RESUMO

The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 µg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.


Assuntos
Arabidopsis , Nanopartículas , Arabidopsis/metabolismo , Cloroplastos , Titânio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Fotossíntese/fisiologia , Clorofila/metabolismo
3.
Colloids Surf B Biointerfaces ; 230: 113536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696162

RESUMO

The effect of the antioxidant activity of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water emulsion was investigated. The antioxidant activity of free and encapsulated α-tocopherol was measured in a 2,2-diphenyl-1-picrylhydrazyl reaction. Apart from α-tocopherol micelles, the samples showed similar antioxidant activity. The number of primary oxidation products in the emulsion with tocopherol liposomes and niosomes was lower than in the emulsion with micelles. During storage, the lipid peroxides gradually increased, whereas in emulsion with no α-tocopherol carriers added they remained constant. The content of the conjugated dienes first increased, and after 14 days at the end of testing time it remained stable in both types of emulsions. Our results might suggest that α-tocopherol when encapsulated into carriers exhibits lower antioxidant activity. The results obtained could be due to the better solubility of α-tocopherol in lipid droplets and thus the lower availability for the interfacial region, which is thought to be the place of the most pronounced lipid oxidation.


Assuntos
Antioxidantes , Micelas , Emulsões , alfa-Tocoferol , Tocoferóis , Lipossomos , Estresse Oxidativo , Água
4.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902403

RESUMO

This study focused on the antifouling effect of copper oxide (Cu2O)- and zineb-based coatings against Cyanothece sp. ATCC 51142 by analysing photosynthetic activity using chlorophyll fluorescence. The photoautotrophically grown cyanobacterium was exposed to toxic coatings over a short-term period of 32 h. The study showed that Cyanothece cultures are particularly sensitive to biocides (i) released from antifouling paints and (ii) exhibited by contact with the coated surfaces. Changes in the maximum quantum yield of photosystem II (FV/FM) were observed within the first 12 h of exposure to the coatings. Partial recovery of FV/FM in Cyanothece was revealed 24 h post exposure to a copper- and zineb-free coating. In this research, we proposed an analysis of the evaluation of fluorescence data to study the initial response of cyanobacterial cells to copper- and non-copper-based antifouling coatings formulated with zineb. We evaluated the dynamics of coating toxicity by determining the characteristic time constants of changes in the FV/FM. Within the most toxic paints studied, those formulated with the highest concentration of Cu2O and zineb, the estimated time constants were 3.9 times lower compared to the copper- and zineb-free paint. The use of zineb in copper-based antifouling coatings enhanced the toxic effect of paints and contributed to a faster decline in photosystem II activity in Cyanothece cells. The analysis we proposed, along with the fluorescence screening results, may be useful in evaluating the initial antifouling dynamic action against photosynthetic aquacultures.


Assuntos
Incrustação Biológica , Cianobactérias , Desinfetantes , Fluorescência , Desinfetantes/análise , Incrustação Biológica/prevenção & controle , Complexo de Proteína do Fotossistema II , Navios , Pintura
5.
Animals (Basel) ; 12(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290169

RESUMO

Insulinomas are insulin-producing tumors of pancreatic beta cells that cause hypoglycemia. They are extremely common in ferrets but have also been reported in guinea pigs and rats. This is a case report of an older rat with spontaneous insulinoma, which was confirmed by histopathology. The patient was presented at a regular check-up due to a chronic respiratory disease. The owner noticed progressive weakness of the hind limbs, which is quite commonly seen in older rats. A blood exam revealed hypoglycemia, which could have been associated with paraparesis. The patient responded to treatment with oral dexamethasone and was regularly monitored. It survived nearly 4 months in good general condition. The rat finally died most probably due to severe hypoglycemia caused by progression of the pancreatic tumor. This is the first report of a pet rat with insulinoma that was successfully treated with glucocorticoids.

6.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925054

RESUMO

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Termografia/métodos , Arabidopsis/efeitos dos fármacos , Cinética , Luz , Pressão Osmótica , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Salinidade , Cloreto de Sódio/administração & dosagem , Estresse Fisiológico
7.
Biochem Biophys Res Commun ; 533(4): 1129-1134, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046242

RESUMO

Thermal imaging was used to study the early stage response to light-induced heating of Arabidopsis thaliana leaves. Time-series thermograms provided a spatial and temporal characterization of temperature changes in Arabidopsis wild type and the ost1-2 mutant rosettes exposed to excessive illumination. The initial response to high light, defined by the exponential increase in leaf temperature of ost1-2 gave an increased thermal time constant compared to wild type plants. The inability to regulate stomata in ost1-2 resulted in enhanced stomatal conductance and transpiration rate. Under strong irradiation, a significant decline in the efficiency of photosystem II was observed. This study evaluates infrared thermography kinetics and determines thermal time constants in particular, as an early and rapid method for diagnosing the prime indicators of light stress in plants under excessive light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Termografia/métodos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Mutação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Proteínas Quinases/genética , Temperatura
8.
J Plant Physiol ; 223: 57-64, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29499454

RESUMO

As tocopherols are expected to protect PSII against toxic singlet oxygen it is surprising that the null tocopherol mutant vte1 has been reported to show only a weak enhancement of photosystem II photoinhibition under high irradiance. Based on the view that singlet oxygen is formed also in unstressed conditions, such as low light (LL), we hypothesized that some defense strategies are activated in vte1 in these light conditions. In support for that we noted several symptoms of stress at PSII in the mutant under LL, by means of parameters of fast and slow kinetics of chlorophyll fluorescence and of changes in the relative contribution of PSII antenna in comparison to those of PSI. This was associated with a lower extent of phosphorylation of PSII core proteins (D1 and CP43). PSII RCs do not totally recover from stress in vte1 even after the nocturnal phase. As a clear compensation for the impeded performance of PSII in the vte1 we noted an increased quantum efficiency of PSI. A pronounced changes between WT and the vte1 mutant were also related to conformation of LHCII at the beginning of photoperiod, suggesting the absence of LHCII trimers in the mutant. The thylakoids thickness was similar in WT and vte1 under LL, but a pronounced unstacking of thylakoids was evoked by HL only in vte1. In conclusion, we postulate that action of 1O2 on PSII in vte1 leads to some permanent damage at PSII core and at LHCII already under LL.


Assuntos
Arabidopsis/metabolismo , Clorofila/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Tocoferóis/metabolismo , Cinética , Fosforilação
9.
Environ Pollut ; 213: 957-965, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060280

RESUMO

In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 µg/ml.


Assuntos
Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas , Titânio/farmacologia , Vitamina E/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biomassa , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Genes de Plantas , Nanopartículas/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Titânio/análise , Titânio/toxicidade , Vitamina E/biossíntese , Vitamina E/genética
10.
Acta Biochim Pol ; 59(1): 61-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428149

RESUMO

The effect of carotenoids on stability of model photosynthetic pigment-protein complexes subjected to chemical oxidation with hydrogen peroxide or potassium ferricyanide was investigated. The oxidation of carotenoid-less and carotenoid-containing complexes was conducted in the presence or absence of ascorbic acid. The progress of the reactions was monitored by use of absorption and fluorescence spectroscopy. Our results show that carotenoids may significantly enhance the stability of photosynthetic complexes against oxidation and their protective (antioxidant) effect depends on the type of the oxidant.


Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Espectrometria de Fluorescência
11.
Ginekol Pol ; 78(5): 393-9, 2007 May.
Artigo em Polonês | MEDLINE | ID: mdl-17867333

RESUMO

Polycystic ovary syndrome is one of the most common endocrinopathies, occurring in women in reproductive ages. Despite a long history of studies on PCOS, its etiology is still unknown and the very definition remains controversial. This paper presents the most modern concepts which explain the pathophysiology of PCOS, concentrating on a gonadotropic-ovarian and an insulin-dependent model, the roles of a inflammatory state, an endothelium injury and an oxidative stress in PCOS development, as well as postulated genetic mechanisms. The hypo-thetical model of PCOS etiopathogenesis is proposed on the base of the discussed partial concepts.


Assuntos
Síndrome do Ovário Policístico/classificação , Síndrome do Ovário Policístico/diagnóstico , Saúde da Mulher , Diagnóstico Diferencial , Endotélio/fisiopatologia , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Inflamação/complicações , Resistência à Insulina , Estresse Oxidativo , Síndrome do Ovário Policístico/etiologia , Síndrome do Ovário Policístico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...