RESUMO
Maximizing the utilization efficiency of monatomic Fe sites in Fe-N-C catalysts poses a significant challenge for their commercial applications. Herein, a structural and electronic dual-modulation is achieved on a Fe-N-C catalyst to substantially enhance its catalytic performance. We develop a facile multi-component ice-templating co-assembly (MIC) strategy to construct two-dimensional (2D) arrays of monatomic Fe-anchored hollow carbon nanoboxes (Fe-HCBA) via a novel dual-outward interfacial contraction hollowing mechanism. The pore engineering not only enlarges the physical surface area and pore volume but also doubles the electrochemically active specific surface area. Additionally, the unique 2D carbon array structure reduces interfacial resistance and promotes electron/mass transfer. Consequently, the Fe-HCBA catalysts exhibit superior oxygen reduction performance with a six-fold enhancement in both mass activity (1.84 A cm-2) and turnover frequency (0.048 e- site-1 s-1), compared to microporous Fe-N-C catalysts. Moreover, the incorporation of phosphorus further enhances the total electrocatalytic performance by three times by regulating the electron structure of Fe-N4 sites. Benefitting from these outstanding characteristics, the optimal 2D P/Fe-HCBA catalyst exhibits great applicability in rechargeable liquid- and solid-state zinc-air batteries with peak power densities of 186 and 44.5 mW cm-2, respectively.
RESUMO
Li5V3O8, a lithiation product derived from the LiV3O8 cathode, has emerged as a promising intercalation-type anode material, boasting a theoretical capacity of 256 mA h g-1. Through a comprehensive combination of experimental and theoretical approaches, we demonstrate its capability to intercalate a substantial amount of Li+ at extremely high rates. Experimental findings reveal that Li5V3O8 exhibits outstanding high-rate capability (with a specific capacity of 152 mA h g-1, 60% of the theoretical capacity at 40 C) and exceptional cyclability (with a capacity retention of 80% after 11,000 cycles at 20 C). The structural changes in Li5V3O8 during the lithiation/delithiation cycles are subtle and reversible. First-principles calculations highlight a knock-off mechanism in Li+ diffusion within Li5V3O8, with an estimated energy barrier ranging from 0.16 to 0.38 eV, considerably lower than that of a direct hopping mechanism (0.62-1.44 eV). These ultrafast ion diffusion properties are attributed to interlock interactions among interstitial tetrahedral Li+ and neighboring octahedral lattice Li+, facilitating long-distance and chain-like Li+ diffusion. This study not only introduces an influential vanadium-based anode material with practical implications for fast-charging lithium-ion batteries but also provides fundamental insights into solid state Li+ diffusion kinetics.
RESUMO
α-Phase formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) have garnered significant attention, owing to their remarkable efficiency. Methylammonium chloride (MACl), a common additive, is used to control the crystallization of FAPbI3, thereby facilitating the formation of the photoactive α-phase. However, MACl's high volatility raises concerns regarding its stability and potential impact on the stability of the device. In this study, we partially substituted MACl with n-propylammonium chloride (PACl), which has a long alkyl chain, to promote the oriented crystallization of FAPbI3, ultimately forming an δ-phase-free perovskite. The FAPbI3 film containing PACl demonstrates an enhanced photoluminescence intensity and lifetime. Additionally, PACl's presence at grain boundaries acts as a protective layer for the PSCs. Consequently, we achieved a power conversion efficiency (PCE) of 22.4% and exceptional stability. It maintains over 95% of initial PCE for 100 days in an N2 glovebox, over 85% after 100 h of maximum power point tracking, and over 80% after 60 °C thermal aging.
RESUMO
In the current work, a rapid, selective, and sensitive technique was developed for the detection of Alizarin Red S (ARS) by applying poly leucine modified carbon paste electrode (PLMCPE). Electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM) were utilized to study the surface morphology of unmodified carbon paste electrode (UMCPE) and PLMCPE. The active surface area for UMCPE and PLMCPE was found to be 0.0012 cm2 and 0.0026 cm2 respectively. The electrochemical response of ARS at UMCPE and PLMCPE was analyzed using cyclic voltammetry (CV) in the potential window of 0.4 to 1.0 V. The cyclic voltammogram obtained for varying the pH of 0.2 M phosphate buffer (PB) solution showed maximum current for the oxidation of ARS at pH 6.5. The electrochemical reaction of ARS was found to be irreversible and adsorption controlled. The effect of variation of concentration of ARS on the oxidation peak current was evaluated using CV and linear scan voltammetry (LSV). A linear relationship between the concentration variation and current was obtained in the linear range of 1.5 µM-3.5 µM and 0.2 µM-5.0 µM for CV and LSV respectively. The limit of detection (LOD) of 0.68 µM for the CV method and 0.29 µM for the LSV method was exhibited by the developed sensor. The simultaneous study of ARS along with tartrazine (TZ) showed good selectivity for ARS. The interferents of foreign molecules showed no effect on the selectivity of the electrode. The applicability of PLMCPE on real samples gave good recovery ranging from 97.46-101.2%; hence, the sensor can be utilized on real samples. The developed sensor has good stability and sensitivity.
Assuntos
Antraquinonas , Carbono , Tartrazina , Carbono/química , Leucina , Eletrodos , Técnicas Eletroquímicas/métodosRESUMO
The production of vanillin from biomass offers a sustainable route for synthesizing daily-use chemicals. However, achieving sunlight-driven vanillin synthesis through H2O activation in an aqueous environment poses challenges due to the high barrier of H2O dissociation. In this study, we have successfully developed an efficient approach for gram-scale vanillin synthesis in an aqueous reaction, employing Mn-defected γ-MnO2 as a photocatalyst at room temperature. Density functional theory calculations reveal that the presence of defective Mn species (Mn3+) significantly enhances the adsorption of vanillyl alcohol and H2O onto the surface of the γ-MnO2 catalyst. Hydroxyl radical (ËOH) species are formed through H2O activation with the assistance of sunlight, playing a pivotal role as oxygen-reactive species in the oxidation of vanillyl alcohol into vanillin. The Mn-defected γ-MnO2 catalyst exhibits exceptional performance, achieving up to 93.4% conversion of vanillyl alcohol and 95.7% selectivity of vanillin under sunlight. Notably, even in a laboratory setting during the daytime, the Mn-defected γ-MnO2 catalyst demonstrates significantly higher catalytic performance compared to the dark environment. This work presents a highly effective and promising strategy for low-cost and environmentally benign vanillin synthesis.
RESUMO
Exploration of high-performance catalysts holds great importance for on-demand H2 production from ammonia borane (AB) hydrolysis. In this work, a hollow bowl-like porous carbon-anchored Ru-MgO hetero-structured nano-pair with high-intensity interfaces is made, using a tailored design approach. Consequently, the optimized catalyst shows AB hydrolysis activity with a turnover frequency value of 784 min-1 in aqueous media and 1971 min-1 in alkaline solvent. Robust durability is also achieved, with slight deactivation after a ten-cycle test. Combined experimental and theoretical calculations validate the positive function of the interface between Ru and MgO for facilitating H transfer and boosting water activation, thus leading to improved AB hydrolysis performance. This study could be valuable in guiding the upgradation of Ru catalytic systems, to advance their practical applications.
RESUMO
The intrinsic roadblocks for designing promising Pt-based oxygen reduction reaction (ORR) catalysts emanate from the strong scaling relationship and activity-stability-cost trade-offs. Here, a carbon-supported Pt nanoparticle and a Mn single atom (PtNP-MnSA/C) as in situ constructed PtNP-MnSA pairs are demonstrated to be an efficient catalyst to circumvent the above seesaws with only â¼4 wt % Pt loadings. Experimental and theoretical investigations suggest that MnSA functions not only as the "assist" for Pt sites to cooperatively facilitate the dissociation of O2 due to the strong electronic polarization, affording the dissociative pathway with reduced H2O2 production, but also as an electronic structure "modulator" to downshift the d-band center of Pt sites, alleviating the overbinding of oxygen-containing intermediates. More importantly, MnSA also serves as a "stabilizer" to endow PtNP-MnSA/C with excellent structural stability and low Fenton-like reactivity, resisting the fast demetalation of metal sites. As a result, PtNPs-MnSA/C shows promising ORR performance with a half-wave potential of 0.93 V vs reversible hydrogen electrode and a high mass activity of 1.77 A/mgPt at 0.9 V in acid media, which is 19 times higher than that of commercial Pt/C and only declines by 5% after 80,000 potential cycles. Specifically, PtNPs-MnSA/C reaches a power density of 1214 mW/cm2 at 2.87 A/cm2 in an H2-O2 fuel cell.
RESUMO
A facile, cost-competitive, scalable and novel synthetic approach is used to prepare copper oxide (CuO) nanoparticles (NPs) using Betel leaf (Piper betle) extracts as reducing, capping, and stabilizing agents. CuO-NPs were characterized using various analytical techniques, including Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), as well as photoluminescence (PL) measurements. The activity of CuO-NPs was investigated towards Congo red dye degradation, supercapacitor energy storage and antibacterial activity. A maximum of 89% photodegradation of Congo red dye (CR) was obtained. The nanoparticle modified electrode also exhibited a specific capacitance (Csp) of 179 Fg-1. Furthermore, the antibacterial potential of CuO NPs was evaluated against Bacillus subtilis and Pseudomonas aeruginosa, both strains displaying high antibacterial performance.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Extratos Vegetais/química , Cobre/química , Nanopartículas Metálicas/química , Vermelho Congo , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
A method is presented herein for the design of wood bio-adhesives using sewage sludge extracts (SSE). SSE was extracted from SS using deep eutectic solvents and processed with glycerol triglycidyl ether (GTE) to disrupt the secondary structure of proteins. An additive was also used to improve mechanical performance. The resulting bio-adhesive (SSE/GTE@TA) had a wet shear strength of 0.93 MPa, meeting the Chinese national standard GB/T 9846-2015 (≥0.7 MPa). However, the high polysaccharide content in SSE would weaken the mechanical properties of wood bio-adhesives. The key to improve bio-adhesive quality was the formation of a strong chemical bond via Maillard reaction as well as higher temperatures (140 °C) to reduce polysaccharide content via dehydration. This approach has lower environmental impact and higher economic efficiency compared to incineration and anaerobic digestion of sewage sludge. This work provides a new perspective on the high-value utilization of SS and offers a novel approach to developing bio-adhesives for the wood industry.
Assuntos
Adesivos , Esgotos , Adesivos/análise , Adesivos/química , Madeira/química , Polissacarídeos/análise , Temperatura AltaRESUMO
High entropy alloys (HEAs), a novel class of material, have been explored in terms of their excellent mechanical properties. Seawater electrolysis is a step towards sustainable production of carbon-neutral fuels such as H2, O2, and industrially demanding Cl2. Herein, we report a practically viable FeCoNiMnCr HEA nanoparticles system grafted on a conductive carbon matrix for promising seawater electrolysis. The comprehensive kinetics analysis of the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and chlorine evolution reaction (CER) confirms the effectiveness of our system. As an electrocatalyst, HEAs grafted on carbon black show trifunctionality with promising kinetics, selectivity and enduring performance, towards seawater splitting. We optimize high entropy alloy decorated/grafted carbon black (HEACB) catalysts, studying their synthesis temperature to scrutinize the effect of alloy formation variation on the catalysis efficacy. During the catalysis, selectivity between two mutually competing reactions, CER and OER, in the electrochemical catalysis of seawater is controlled by the reaction media pH. We employ Mott-Schottky measurements to probe the band structure of the intrinsically induced metal-semiconductor junction in the HEACB catalyst, where the carrier density and flat band potential are optimized. The HEACB sample provides promising results towards overall seawater electrolysis with a net half-cell potential of about 1.65 V with good stability, which strongly implies its broad practical applicability.
RESUMO
Although hollow carbon structures have been extensively studied in recent years, their interior surfaces are not fully utilized due to the lack of fluent porous channels in the closed shell walls. This study presents a tailored design of open-mouthed particles hollow cobalt/nitrogen-doped carbon with mesoporous shells (OMH-Co/NC), which exhibits sufficient accessibility and electroactivity on both the inner and outer surfaces. By leveraging the self-conglobation effect of metal sulfate in methanol, a raspberry-structured Zn/Co-ZIF (R-Zn/Co-ZIF) precursor is obtained, which is further carbonized to fabricate the OMH-Co/NC. In-depth electrochemical investigations demonstrate that the introduction of open pores can enhance mass transfer and improve the utilization of the inner active sites. Benefiting from its unique structure, the resulting OMH-Co/NC exhibits exceptional electrocatalytic oxygen reduction performance, achieving a half-wave potential of 0.865 V and demonstrating excellent durability.
RESUMO
The management and final disposal of agro-industrial wastes are one of the main environmental problems. Due to the presence of silica in some agricultural by-products, it is possible to convert waste into materials with advanced properties. This contribution was aimed to extract and characterize silica materials from various feedstocks including sugarcane bagasse (SCB), corn stalk (CS), and rice husk (RH). Silica yields of 17.91%, 9.39%, and 3.25% were obtained for RH, CS, and SCB. On the other hand, the textural properties show that the siliceous materials exhibited mesoporous structures, with high silica composition in the materials due to the formation of crystalline SiO2 for SCB and CS and amorphous for RH. XPS spectra demonstrate the presence of Si4+ species in RH, and Si3+/Si4+ tetrahedra in SCB and CS.
Assuntos
Resíduos Industriais , Saccharum , Celulose/química , Dióxido de Silício/química , Biomassa , Saccharum/químicaRESUMO
Diffusion dialysis (DD) process utilizing anion exchange membranes (AEMs) is an environmentally-friendly and energy-efficient technology. From acidic wastewater, DD is needed for acid recovery. This research reports the development of a series of dense tropinium-functionalized AEMs via solution casting method. Fourier Infrared transform (FTIR) spectroscopy verified the successful preparation of AEMs. The developed AEMs exhibited a dense morphology, featuring 0.98-2.42 mmol/g of ion exchange capacity (IEC), 30-81% of water uptake (WR) and 7-32% of linear swelling ratio (LSR). They displayed exceptional mechanical, thermal and chemical stability and were employed for acid waste treatment from HCl/FeCl2 mixtures via DD process. AEMs possessed 20 to 59 (10-3 m/h) and 166 to 362 of acid diffusion dialysis coefficient (UH+) and separation factor (S) respectively at 25 °C. Compared to DF-120 commercial membrane (UH+ = 0.004 m/h, S = 24.3), their DD efficiency was improved under identical experimental conditions.
Assuntos
Águas Residuárias , Diálise/métodos , Ânions , DifusãoRESUMO
The exploitation of biomass to reduce the dependency on fossil fuels represents a challenge that needs to be solved as soon as possible. Nowadays, one of the most fashionable processes is γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML). Deep understanding of the thermodynamic aspects involved in this process is key for a successful outcome, but detailed studies are missing in the existing literature. A thermodynamic study of the reaction of γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML) is performed by the Gibbs free energy minimization method. The effect of various reaction conditions (temperature, concentration, flow rate) and the implication of possible intermediates and byproducts are assessed. Conversion and selectivity are calculated from the simulation of the ML hydrogenation using isopropanol as the hydrogen donor under continuous flow conditions. Significant increases in GVL selectivity can be achieved under dry conditions, keeping the high conversion. Comparison between theoretical and experimental results from a previous article discloses the effect of using 5%RuTiO2 catalysts, which increases the selectivity from 3-40% to 41-98%. Enthalpy and Gibbs free energy of the reactions at issue are also calculated from models using Barin equations according to Aspen Physical Property System parameters.
RESUMO
A potential application of spiky SiO2 nanoparticles (NPs) with tubular and rough surfaces is investigated as superhydrophobic coatings, for their unique transparent, fluorinate-free, and environmentally friendly properties. This study demonstrates a facile method for the successful fabrication of superhydrophobic coatings and SiO2 @polydimethylsiloxane (PDMS) using spiky SiO2 NPs, N-coordinated boroxines, and PDMS. Combined with spray coating technology, this method of superhydrophobic coating can be simply applied to both hydrophilic and hydrophobic surfaces, including wood, fabric, glass, metal, sponge, and paper. The nanocomposite coating on the glass surface showed both excellent superhydrophobicity and high transparency, with a contact angle of 165.4 ± 1.0° and 96.93% transmittance at 550 nm, respectively. SiO2 @PDMS-modified glass substrate is found to be resilient to UV irradiation, water, and high temperature treatments at ambient conditions. Experimental data demonstrated that the simple but effective combination of N-boroxine-PDMS and spiky SiO2 NPs produces a layered coating material that exhibits many good integrated surface properties, including stability, transparency, superhydrophobicity, and oil-water separation.
RESUMO
Conventional chemotherapy poses toxic effects to healthy tissues. A therapeutic system is thus required that can administer, distribute, metabolize, and excrete medicine from human body without damaging healthy cells. This is possible by designing a therapeutic system that can release drug at specific target tissue. In current work, novel chitosan (CS) based polymeric nanoparticles (PNPs) containing N-isopropyl acrylamide (NIPAAM) and 2-(di-isopropyl amino) ethyl methacrylate (DPA) are designed. The presence of available functional groups i.e. OH- (3262 cm-1), -NH2 (1542 cm-1), and CO (1642 cm-1), was confirmed by Fourier Transform Infra-red Spectrophotometry (FTIR). The surface morphology and average particle size (175 nm) was determined through Scanning Electron Microscope (SEM). X-Ray Diffractometry (XRD) studies confirmed the amorphous nature and excellent thermal stability of PNPs up to 100 °C with only 2.69% mass loss was confirmed by Thermogravimetric analysis (TGA). The pH sensitivity of such PNPs for release of encapsulated doxorubicin at malignant site was investigated. The encapsulation efficiency of PNPs was 89% (4.45 mg/5 mg) for doxorubicin (a chemotherapeutic) measured by using UV-Vis Spectrophotometer. The drug release profile of loaded PNPs was 88% (3.92 mg/4.45 mg) at pH 5.3, in 96 h. PNPs with varying DPA concentration can effectively be used to deliver chemotherapeutic agents with high efficacy.
Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Polímeros , Doxorrubicina , Liberação Controlada de Fármacos , Portadores de Fármacos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Microambiente TumoralRESUMO
The rapid industrialization of the world is disparagingly manipulating our environment and natural ecosystem. The researchers are taking keen interest to invent novel material as photocatalyst for non-degradable organic pollutants. Solar energy-driven practices employing semiconductors are a novel approach towards wastewater remediation. Here in, we successfully synthesized a vigorous photocatalysts comprising of g-C3N4 and doped ZnO-W/M (M = Co, Ce, Yb, Sm) by co-precipitation followed by metals doping via calcination approach. The structural, morphological, and photocatalytic applications for organic pollutants of synthesized heterostructure nanocomposites were examined by XRD, FTIR, SEM, EDX and UV visible spectrophotometer. Diffraction peaks attributed to both g-C3N4 and ZnO-W were detected in the XRD spectra. The FTIR spectra also inveterate the formation of g-C3N4/ZnO-W/M composites. The SEM images reveal an agglomerated morphology and EDS analysis also confirmed close contact between g-C3N4, ZnO-W and doped metals. The abridged energy band gap of g-C3N4/ZnO-W/M (M = Ce, Yb, Sm, Co) nanocomposites calculated via Tauc plot are 2.68, 2.88, 3.24 and 3.29 eV respectively. Narrowing of bandgap is considered an imperative triumph for the degradation of industrial effluents. The photocatalytic activity was performed against four different dyes and follows the trend Ce > Yb > Sm > Co. The recyclability tests were carried out for different dyes and no substantial catalytic activity loss was observed even after the fourth experimental run, which proves that reported ternary heterojunctions exhibit high mechanical stability and reusability.The species trapping experiment exposed that generated h+ are the principal active specie for dye photodegradation reactions. This work disseminates a novel photocatalyst for the removal of synthetic dyes.
Assuntos
Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Ecossistema , Catálise , Nanocompostos/química , CorantesRESUMO
Nanomaterials mainly nanocomposites possess unique physical and chemical properties which makes them superior and indispensable. Though much research has been focused on the properties and application of nanocomposites, the eco-toxicity assessment is one among top priority, which aims to protect the population of concerned biological component and their ecosystem. With this objective, the present study has undertaken an initiation to evaluate the efficacy of chitosan-silver nanocomposite for methyl orange adsorption property (CS-AgNC) and also assessed the toxicity impact on growth parameters of freshwater Tilapia. Batch in vitro studies showed that all the tested dosages of the nanocomposite were effectively adsorbing maximum concentration of methyl orange. The synthesized nanocomposite was administrated to the tested fishes followed by the determination of various growth, nutritional parameters, gene expression of enzymatic antioxidants and liver, and intestinal tissues histology. Obtained results indicated that nanocomposite treatment was not projected as a toxic impact on all the tested growth, and nutritional parameters. Histology study showed that the exposure of Tilapia to nanocomposite has not shown any detrimental effect on antioxidants gene expression and liver, intestinal tissue architecture. Hence, all these findings indicated that chitosan-silver nanocomposite prepared in our present system was found to be biocompatible which suggested the possible utilization and release of the nanocomposite into the divergent ecosystem without affecting non-target organisms (NTO).
Assuntos
Quitosana , Nanocompostos , Tilápia , Adsorção , Animais , Compostos Azo , Quitosana/química , Ecossistema , Água Doce , Nanocompostos/química , Nanocompostos/toxicidade , Prata/química , Prata/toxicidadeRESUMO
The design of conductive, improved durable and selective anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process is critical for a more sustainable future. This work reports the design of a series of homogeneous trimethylphosphine (TMP)-functionalized anion exchange membranes (AEMs) for desalination application via electrodialysis (ED) process. Physico-chemical characterization and electrochemical performance of the trimethylphosphine-functionalized anion exchange membranes was conducted and the activity found to be tuned by varying the quantity of trimethylphosphine into the membrane architecture. For anion exchange membranes M1 to M4, the ion exchange capacity (IEC) was increased from 1.35 to 2.16 mmol/g, water uptake (WR) from 4.30 to 17.72%, linear expansion ratio (LER) from 3.70 to 12.50% with enhancing the quantity of trimethylphosphine into the polymer architecture. The ionic resistance decreased from 15.14 to 2.61 Ω cm2 with increasing quantities of trimethylphosphine whereas transport number increased from 0.98 to 0.99. The performance of synthesized trimethylphosphine-functionalized anion exchange membranes in desalination of NaCl was evaluated via electrodialysis process (flux of 3.42 mol/m2. h and current efficiency of 64.30%). Results showed that the prepared trimethylphosphine-functionalized membrane (optimum M4) possess improved desalination performance as compared to commercial membrane Neosepta AMX under identical experimental conditions.
Assuntos
Membranas Artificiais , Cloreto de Sódio , Ânions , Polímeros/química , Sulfonas , Água/químicaRESUMO
A covalent organic framework (COF) was used as the support of the catalyst in this work in order to obtain an environmentally friendly catalyst with high catalytic performance, selectivity and stability for 4-nitrophenol hydrogenation. Pd tiny particles are fixed in the cavity of COF to obtain Pd/COF catalysts, which has a quite narrow particle size distribution (5.09 ± 1.30 nm). As-prepared Pd/COF catalysts (Pd loading-2.11 wt%) shows excellent catalytic performance (conversion - 99.3%, selectivity >99.0% and turnover frequency (TOF)-989.4 h-1) for 4-nitrophenol hydrogenation under relatively mild reaction conditions of reaction temperature-40 °C and reaction pressure-3.0 MPa H2, and Pd/COF catalysts have high stability. Pd/COF catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscope (TEM), high resolution TEM (HRTEM), Brunauer-Emmett-Teller (BET), scanning TEM energy-dispersive X-ray spectroscopy (STEM-EDS) elemental analysis techniques to prove that the Pd nanoparticles are highly dispersed on the COF. Pd/COF catalysts have good stability and reusability hence with certain industrial application value.