Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 5(48)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591409

RESUMO

Liver resident-memory CD8+ T cells (TRM cells) can kill liver-stage Plasmodium-infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver TRM cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate Plasmodium-specific CD8+ T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer). A single dose of this vaccine in mice induced substantial numbers of intrahepatic malaria-specific CD8+ T cells expressing canonical markers of liver TRM cells (CD69, CXCR6, and CD101), and these cells could be further increased in number upon vaccine boosting. We show that modifications to the peptide, such as addition of proteasomal-cleavage sequences or epitope-flanking sequences, or the use of alternative conjugation methods to link the peptide to the glycolipid improved liver TRM cell generation and led to the development of a vaccine able to induce sterile protection in C57BL/6 mice against Plasmodium berghei sporozoite challenge after a single dose. Furthermore, this vaccine induced endogenous liver TRM cells that were long-lived (half-life of ~425 days) and were able to maintain >90% sterile protection to day 200. Our findings describe an ideal synthetic vaccine platform for generating large numbers of liver TRM cells for effective control of liver-stage malaria and, potentially, a variety of other hepatotropic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicolipídeos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Fígado/patologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
2.
Org Biomol Chem ; 17(5): 1225-1237, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30656346

RESUMO

Activated NKT cells can stimulate antigen-presenting cells leading to enhanced peptide antigen-specific immunity. However, administration of potent NKT cell agonists like α-galactosylceramide (α-GalCer) can be associated with release of high levels of cytokines, and in some situations, hepatotoxicity. Here we show that it is possible to provoke sufficient NKT cell activity to stimulate strong antigen-specific T cell responses without these unwanted effects. This was achieved by chemically conjugating antigenic peptides to α-galactosylphytosphingosine (α-GalPhs), an NKT cell agonist with very weak activity based on structural characterisation and biological assays. Conjugation improved delivery to antigen-presenting cells in vivo, while use of a cathepsin-sensitive linker to release the α-GalPhs and peptide within the same cell promoted strong T cell activation and therapeutic anti-tumour responses in mice. The conjugates activated human NKT cells and enhanced human T cell responses to a viral peptide in vitro. Accordingly, we have demonstrated a means to safely exploit the immunostimulatory properties of NKT cells to enhance T cell activation for virus- and tumour-specific immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Peptídeos/administração & dosagem , Adjuvantes Imunológicos , Animais , Antígenos CD1d/química , Vacinas Anticâncer/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Epitopos/química , Glicolipídeos/química , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Peptídeos/química , Peptídeos/imunologia
3.
ACS Chem Biol ; 12(11): 2898-2905, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29043774

RESUMO

The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Galactosilceramidas/uso terapêutico , Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/uso terapêutico , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Reação de Cicloadição , Feminino , Galactosilceramidas/síntese química , Galactosilceramidas/imunologia , Humanos , Vírus da Influenza A/química , Vacinas contra Influenza/síntese química , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Peptídeos/síntese química , Peptídeos/imunologia , Técnicas de Síntese em Fase Sólida
4.
Org Lett ; 17(24): 5954-7, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26606283

RESUMO

A major challenge in the development of highly defined synthetic vaccines is the codelivery of vaccine components (i.e., antigen and adjuvant) to secondary lymphoid tissue to induce optimal immune responses. This problem can be addressed by synthesizing vaccines that comprise peptide antigens covalently attached to glycolipid adjuvants through biologically cleavable linkers. Toward this, a strategy utilizing previously unreported 6″-deoxy-6″-thio analogues of α-GalCer that can undergo chemoselective conjugation with peptide antigens is described. Administration of these conjugate vaccines leads to enhanced priming of antigen specific T cells. This simple vaccine design is broadly applicable to multiple disease indications such as cancer and infectious disease.


Assuntos
Galactosilceramidas/síntese química , Compostos Macrocíclicos/síntese química , Peptídeos/síntese química , Césio/análise , Galactosilceramidas/química , Humanos , Compostos Macrocíclicos/química , Maleimidas/síntese química , Maleimidas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química
5.
J Immunother ; 38(8): 321-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26325376

RESUMO

Circulating antigens released from tumor cells can drain into the spleen and be acquired by resident antigen-presenting cells (APCs). Here, we examined the ability of splenic dendritic cells to cross-present tumor antigens to CD8+ T cells and investigated the effects that this has on T-cell therapy in a murine model of lymphoma. In the presence of established lymphoma, langerin (CD207)-expressing CD8α+ dendritic cells acquired, processed, and cross-presented tumor antigens to naive CD8+ T cells. Although this resulted in initial T-cell proliferation, the T-cell population failed to expand measurably over the following days, and tumor-free survival was actually improved when langerin-expressing cells were depleted. In contrast, following adoptive T-cell therapy with in vitro-activated CD8+ T cells, marked antitumor activity was observed and associated with accumulation of activated antigen-specific CD8+ T cells in the spleen and blood, whereas tumor protection and T-cell accumulation were significantly reduced in animals depleted of langerin-expressing cells. Therefore, although resident APCs that acquire tumor antigens may induce tolerance in naive cells in the absence of further stimuli, they can play an important role in promoting antitumor immunity during the course of T-cell therapy. It is possible that further therapeutic benefit will result from improving the activation status of these APCs.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva , Animais , Antígenos de Superfície/imunologia , Linhagem Celular Tumoral , Lectinas Tipo C/imunologia , Linfoma/terapia , Lectinas de Ligação a Manose/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/citologia , Baço/imunologia
6.
J Immunol ; 195(3): 821-31, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078270

RESUMO

The function of dendritic cells (DCs) can be modulated through multiple signals, including recognition of pathogen-associated molecular patterns, as well as signals provided by rapidly activated leukocytes in the local environment, such as innate-like T cells. In this article, we addressed the possibility that the roles of different murine DC subsets in cross-priming CD8(+) T cells can change with the nature and timing of activatory stimuli. We show that CD8α(+) DCs play a critical role in cross-priming CD8(+) T cell responses to circulating proteins that enter the spleen in close temporal association with ligands for TLRs and/or compounds that activate NKT cells. However, if NKT cells are activated first, then CD8α(-) DCs become conditioned to respond more vigorously to TLR ligation, and if triggered directly, these cells can also contribute to priming of CD8(+) T cell responses. In fact, the initial activation of NKT cells can condition multiple DC subsets to respond more effectively to TLR ligation, with plasmacytoid DCs making more IFN-α and both CD8α(+) and CD8α(-) DCs manufacturing more IL-12. These results suggest that different DC subsets can contribute to T cell priming if provided appropriately phased activatory stimuli, an observation that could be factored into the design of more effective vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Superfície/genética , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Interleucina-12/biossíntese , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia , Receptores Toll-Like/imunologia
7.
J Leukoc Biol ; 96(6): 1001-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25170118

RESUMO

This study tests the hypothesis that CD8α(+) DCs in the spleen of mice contain an immature precursor for functionally mature, "classical" cross-presenting CD8α(+) DCs. The lymphoid tissues contain a network of phenotypically distinct DCs with unique roles in surveillance and immunity. Splenic CD8α(+) DCs have been shown to exhibit a heightened capacity for phagocytosis of cellular material, secretion of IL-12, and cross-priming of CD8(+) T cells. However, this population can be subdivided further on the basis of expression of both langerin/CD207 and CX(3)CR1. We therefore evaluated the functional capacities of these different subsets. The CX(3)CR1(+) CD8α(+) DC subset does not express langerin and does not exhibit the classical features above. The CX(3)CR1(-) CD8α(+) DC can be divided into langerin-positive and negative populations, both of which express DEC205, Clec9A, and high basal levels of CD86. However, the langerin(+) CX(3)CR1(-) CD8α(+) subset has a superior capacity for acquiring cellular material and producing IL-12 and is more susceptible to activation-induced cell death. Significantly, following purification and adoptive transfer into new hosts, the langerin(-) CX(3)CR1(-) CD8α(+) subset survives longer, up-regulates expression of langerin, and becomes more susceptible to activation-induced cell death. Last, in contrast to langerin(+) CX(3)CR1(-) CD8α(+), the langerin(-) CX(3)CR1(-) CD8α(+) are still present in Batf3(-/-) mice. We conclude that the classical attributes of CD8α(+) DC are confined primarily to the langerin(+) CX(3)CR1(-) CD8α(+) DC population and that the langerin(-) CX(3)CR1(-) subset represents a Batf3-independent precursor to this mature population.


Assuntos
Imunidade Adaptativa , Antígenos de Diferenciação/análise , Células Dendríticas/classificação , Transferência Adotiva , Animais , Apresentação de Antígeno , Antígenos de Superfície/análise , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Fatores de Transcrição de Zíper de Leucina Básica/análise , Antígenos CD8/análise , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Senescência Celular , Cruzamentos Genéticos , Células Dendríticas/química , Células Dendríticas/imunologia , Feminino , Galactosilceramidas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Tolerância Imunológica/imunologia , Imunofenotipagem , Subunidade p40 da Interleucina-12/biossíntese , Lectinas Tipo C/análise , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Masculino , Lectinas de Ligação a Manose/análise , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Receptores de Quimiocinas/análise , Proteínas Repressoras/análise , Baço/citologia , Baço/imunologia
8.
J Immunol Methods ; 406: 104-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556588

RESUMO

Splenic langerin(+) CD8α(+) dendritic cells (DCs) have exhibited a critical role in cross-priming CD8(+) T cell responses. To further study the roles of this DC subset, a protocol for the continuous depletion of langerin(+) CD8α(+) DCs was established using the pre-existing lang-DTREGFP mouse model. Due to the fast turnover rate of splenic CD8α(+) DCs, maintaining the depletion of langerin(+) CD8α(+) DCs required multiple diphtheria toxin (DT) treatments. We found that prolonged treatment with DT did not cause weight loss, or neutrophilia, as reported in some DT-based depletion models. Therefore, the in vivo depletion of murine langerin(+) CD8α(+) DCs can be maintained over time to analyse their function during the full course of an immune response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Toxina Diftérica/imunologia , Depleção Linfocítica , Animais , Apresentação de Antígeno/imunologia , Antígenos de Superfície/imunologia , Antígenos CD8/imunologia , Toxina Diftérica/administração & dosagem , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/citologia , Baço/imunologia
9.
Int J Mol Med ; 25(6): 883-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20428792

RESUMO

The transmembrane glycoprotein CD133 is a marker commonly used for isolation and analysis of putative cancer stem-like cells. However, analysis of CD133 expression is potentially confounded by the fact that two of the commonly used anti-CD133 antibodies, AC133 and 293C, only recognize CD133 that has undergone glycosylation. Therefore, our aim was to thoroughly examine antibody recognition and mRNA expression of CD133 in glioblastoma multiforme. Glioblastoma cell lines and primary cultures obtained from resected tumor tissue were analyzed by real-time PCR, Western blot analysis, and flow cytometry for CD133, and immunofluorescence was used to determine cellular localization. The AC133 and 293C antibodies did not detect any CD133 on the surface of the glioblastoma cells despite the fact that a protein was detected using C24B9, an anti-CD133 antibody that recognizes an unglycosylated epitope. This CD133 variant was truncated ( approximately 16 kDa) and, unlike typical expression of full-length CD133 protein, was found throughout the cytoplasm instead of localized to the plasma membrane. Levels of mRNA and protein for the variant increased with stress, indicating potential for it to be a functional molecule. Because AC133 and 293C antibodies do not detect all CD133 variants in glioblastoma cells, alternate detection methods need to be utilized for complete analysis of CD133 expression and for accurately determining the relationship between CD133 and cancer stem-like cells.


Assuntos
Antígenos CD/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicoproteínas/metabolismo , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Anticorpos Monoclonais/imunologia , Antígenos CD/química , Antígenos CD/genética , Linhagem Celular Tumoral , Epitopos/imunologia , Regulação da Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Humanos , Microscopia Confocal , Peptídeos/química , Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...