Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 236: 124117, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31323549

RESUMO

Polybrominated diphenyl ethers (PBDEs), previously commonly used as flame retardants, should be monitored in the environment since some are listed as persistent organic pollutants. A contaminated site near a northern Taiwan factory using decabrominated diphenyl ether (deca-BDE) was identified based on a vegetable PBDEs monitoring project in 2013. The subsequent spatial and temporal survey of that contaminated site shows the contamination ingredients in soils were close to ones used by the factory, indicating that contamination was from the factory, possibly through an exhaust vent. The average concentration of deca-BDE in the main contaminated soil was 615 µg/kg d. w. (dry weight) soil in 2015, slightly decreasing to 604 µg/kg d. w. soil in 2016, increasing to 844 µg/kg d. w. soil in 2017, and then slightly decreasing to 670 µg/kg d. w. soil in 2018. The slight change of deca-BDE and the minor change in low brominated congener level indicate a low degradation rate. The contamination of peripheral sites was around 5000 µg/kg d. w. soil for one PBDEs sampling site that was higher than those around or within the main contaminated farm, indicating serious pollution. Concentrations of PBDEs in different soil depths show that depth 2-15 cm accounted for the greatest PBDEs accumulation, indicating that deca-BDE pollution had been present over time and transported into deeper soil. There can be PBDEs uptake by crops consumed by humans, as shown in our previous studies, so continuous monitoring of PBDEs in this site is important and treatments should be established urgently.


Assuntos
Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/química , Solo/química , Poluentes do Solo/análise , Inquéritos e Questionários , Taiwan
2.
Sci Total Environ ; 635: 629-638, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679835

RESUMO

Emerging contaminants (ECs) such as bisphenol A (BPA), 4-nonylphenol (4-NP) and tetrabromobisphenol A (TBBPA) have gained immense attention worldwide due to their potential threat to humans and environment. Graphene oxide (GO) nanomaterial is considered as an important sorbent due to its exceptional range of environmental application owing to its unique properties. GO was also considered as one of ECs because of its potential hazard. The adsorption of organic contaminants such as phenolic ECs on GO affects the stability of GO nanoflakes in water and the fate of organic contaminants, which would cause further environmental risk. Therefore, the adsorption behaviors of emerging and common phenolic compounds (PCs) including phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-NP, BPA and TBBPA on GO nanoflakes and their stability in water were studied. The adsorption equilibrium for all the compounds was reached <10h and was fitted with Langmuir and Freundlich isotherms. In addition to hydrophobic effect, adsorption mechanisms included π-π bonding and hydrogen bonding interactions between the adsorbate and GO, especially the electrostatic interactions were observed. Phenol has the highest adsorption affinity due to the formation of hydrogen bond. GO has a good stability in water even after the adsorption of PCs in the presence of a common electrolyte, which could affect its transport with organic contaminants in the environment. These better understandings illustrate the mechanism of emerging and common PC interaction with GO nanoflakes and facilitate the prediction of the contaminant fate in the aquatic environment.


Assuntos
Grafite/química , Modelos Químicos , Nanoestruturas/química , Poluentes Químicos da Água/química , Adsorção , Compostos Benzidrílicos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Fenóis/química , Bifenil Polibromatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...