Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 478(10): 1985-1997, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33960375

RESUMO

G:T mismatches, the major mispairs generated during DNA metabolism, are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). Mismatch-specific DNA glycosylases must discriminate the mismatches against million-fold excess correct base pairs. MBD4 efficiently removes thymine opposite guanine but not opposite adenine. Previous studies have revealed that the substrate thymine is flipped out and enters the catalytic site of the enzyme, while the estranged guanine is stabilized by Arg468 of MBD4. To gain further insights into the mismatch discrimination mechanism of MBD4, we assessed the glycosylase activity of MBD4 toward various base pairs. In addition, we determined a crystal structure of MBD4 bound to T:O6-methylguanine-containing DNA, which suggests the O6 and N2 of purine and the O4 of pyrimidine are required to be a substrate for MBD4. To understand the role of the Arg468 finger in catalysis, we evaluated the glycosylase activity of MBD4 mutants, which revealed the guanidinium moiety of Arg468 may play an important role in catalysis. D560N/R468K MBD4 bound to T:G mismatched DNA shows that the side chain amine moiety of the Lys stabilizes the flipped-out thymine by a water-mediated phosphate pinching, while the backbone carbonyl oxygen of the Lys engages in hydrogen bonds with N2 of the estranged guanine. Comparison of various DNA glycosylase structures implies the guanidinium and amine moieties of Arg and Lys, respectively, may involve in discriminating between substrate mismatches and nonsubstrate base pairs.


Assuntos
Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Guanina/metabolismo , Timina/metabolismo , Catálise , Domínio Catalítico , Guanina/química , Humanos , Conformação Proteica , Especificidade por Substrato , Timina/química
2.
Biochem J ; 477(9): 1601-1612, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297632

RESUMO

Thymine:guanine base pairs are major promutagenic mismatches occurring in DNA metabolism. If left unrepaired, these mispairs can cause C to T transition mutations. In humans, T:G mismatches are repaired in part by mismatch-specific DNA glycosylases such as methyl-CpG-binding domain 4 (hMBD4) and thymine-DNA glycosylase. Unlike lesion-specific DNA glycosylases, T:G-mismatch-specific DNA glycosylases specifically recognize both bases of the mismatch and remove the thymine but only from mispairs with guanine. Despite the advances in biochemical and structural characterizations of hMBD4, the catalytic mechanism of hMBD4 remains elusive. Herein, we report two structures of hMBD4 processing T:G-mismatched DNA. A high-resolution crystal structure of Asp560Asn hMBD4-T:G complex suggests that hMBD4-mediated glycosidic bond cleavage occurs via a general base catalysis mechanism assisted by Asp560. A structure of wild-type hMBD4 encountering T:G-containing DNA shows the generation of an apurinic/apyrimidinic (AP) site bearing the C1'-(S)-OH. The inversion of the stereochemistry at the C1' of the AP-site indicates that a nucleophilic water molecule approaches from the back of the thymine substrate, suggesting a bimolecular displacement mechanism (SN2) for hMBD4-catalyzed thymine excision. The AP-site is stabilized by an extensive hydrogen bond network in the MBD4 catalytic site, highlighting the role of MBD4 in protecting the genotoxic AP-site.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/metabolismo , Endodesoxirribonucleases , Catálise , Domínio Catalítico , Cristalografia/métodos , DNA/química , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Guanina/metabolismo , Humanos , Timina/metabolismo , Timina DNA Glicosilase/metabolismo
3.
Biochem J ; 477(5): 937-951, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32039434

RESUMO

The cisplatin-1,2-d(GpG) (Pt-GG) intrastrand cross-link is the predominant DNA lesion generated by cisplatin. Cisplatin has been shown to predominantly induce G to T mutations and Pt-GG permits significant misincorporation of dATP by human DNA polymerase ß (polß). In agreement, polß overexpression, which is frequently observed in cancer cells, is linked to cisplatin resistance and a mutator phenotype. However, the structural basis for the misincorporation of dATP opposite Pt-GG is unknown. Here, we report the first structures of a DNA polymerase inaccurately bypassing Pt-GG. We solved two structures of polß misincorporating dATP opposite the 5'-dG of Pt-GG in the presence of Mg2+ or Mn2+. The Mg2+-bound structure exhibits a sub-optimal conformation for catalysis, while the Mn2+-bound structure is in a catalytically more favorable semi-closed conformation. In both structures, dATP does not form a coplanar base pairing with Pt-GG. In the polß active site, the syn-dATP opposite Pt-GG appears to be stabilized by protein templating and pi stacking interactions, which resembles the polß-mediated dATP incorporation opposite an abasic site. Overall, our results suggest that the templating Pt-GG in the polß active site behaves like an abasic site, promoting the insertion of dATP in a non-instructional manner.


Assuntos
Antineoplásicos/química , Cisplatino/química , Dano ao DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Mutagênese/fisiologia , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Cristalografia por Raios X/métodos , Dano ao DNA/efeitos dos fármacos , Humanos , Mutagênese/efeitos dos fármacos , Estrutura Secundária de Proteína
4.
Biochem J ; 476(4): 747-758, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709915

RESUMO

Oxaliplatin, together with cisplatin, is among the most important drugs used in cancer chemotherapy. Oxaliplatin, which contains a bulky diaminocyclohexane (DACH) moiety, kills cancer cells mainly by producing (DACH)Pt-GpG intrastrand cross-links that impede transcription. The Pt-GpG tolerance by translesion DNA synthesis (TLS) polymerases contributes to the resistance of tumors to platinum-based chemotherapy. In particular, human DNA polymerase η (Polη) readily bypasses Pt-GpG adducts. While many structural studies have addressed how TLS polymerases interact with cisplatin-DNA adducts, a structure of DNA polymerase in complex with oxaliplatin-DNA adducts has not been reported, limiting our understanding of bypass of the bulky (DACH)Pt-GpG lesion by TLS polymerases. Herein, we report the first structure of DNA polymerase bound to oxaliplatinated DNA. We determined a crystal structure of Polη incorporating dCTP opposite the 3'G of the (DACH)Pt-GpG, which provides insights into accurate, efficient bypass of the oxaliplatin-GpG adducts by TLS polymerases. In the catalytic site of Polη, the 3'G of the (DACH)Pt-GpG formed three Watson-Crick hydrogen bonds with incoming dCTP and the primer terminus 3'-OH was optimally positioned for nucleotidyl transfer. To accommodate the bulky (DACH)Pt-GpG lesion, the Val59-Trp64 loop in the finger domain of Polη shifted from the positions observed in the corresponding Polη-cisplatin-GpG and undamaged structures, suggesting that the flexibility of the Val59-Trp64 loop allows the enzyme's bypass of the (DACH)Pt-GpG adducts. Overall, the Polη-oxaliplatin-GpG structure provides a structural basis for TLS-mediated bypass of the major oxaliplatin-DNA adducts and insights into resistance to platinum-based chemotherapy in humans.


Assuntos
Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Oxaliplatina/química , Cristalografia por Raios X , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
5.
Chem Biol Drug Des ; 91(1): 116-125, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28649747

RESUMO

Cisplatin resistance is caused, in part, by the efficient removal of the helix-distorting cisplatin 1,2-intrastrand cross-links by nucleotide excision repair (NER) machinery. To make a platinum-DNA adduct that causes less helical distortion than the cisplatin 1,2-intrastrand adduct, we designed and synthesized a monofunctional platinum-carbazole conjugate (carbazoplatin). The 2.5 Å crystal structure of carbazoplatin-DNA adduct revealed both the monoplatination of the N7 of a guanine (G) base and the intercalation into two G:C base pairs, while causing a minor distortion of the DNA helix. A 50-mer dsDNA containing a single carbazoplatin lesion was poorly processed by UvrABC endonuclease, the prokaryotic NER machinery that detects helical distortion and performs dual incision around the lesion. Our cell viability assay indicated that the cytotoxic pathways of carbazoplatin might be different from those of cisplatin; carbazoplatin was 5-8 times more cytotoxic than cisplatin against PANC-1 and MDA-MB-231 cancer cell lines.


Assuntos
Antineoplásicos/síntese química , Carbazóis/química , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Adutos de DNA/química , Dano ao DNA/efeitos dos fármacos , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Desenho de Fármacos , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
6.
Nucleic Acids Res ; 42(13): 8755-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24966350

RESUMO

N7-Methyl-2'-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2'-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2'-fluoro-m7dG (Fm7dG), by human DNA polymerase ß (polß) and solved three X-ray structures of polß in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polß catalysis ∼ 300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson-Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polß-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polß. In addition, the polß-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polß catalysis across m7dG is slow, yet highly accurate.


Assuntos
DNA Polimerase beta/química , Guanina/análogos & derivados , DNA/química , DNA Polimerase beta/metabolismo , Nucleotídeos de Desoxicitosina/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Guanina/química , Humanos , Cinética , Manganês/química , Modelos Moleculares , Nucleotídeos de Timina/química
7.
Steroids ; 78(9): 938-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756172

RESUMO

We have synthesized 16,22-diketocholesterol, a novel ligand for oxysterol-binding protein Osh4, and determined X-ray structure of the diketocholesterol in complex with Osh4. The X-ray structure shows that α7 helix of Osh4 assumes open conformation while the rest of Osh4, closed conformation, implying this diketocholesterol-bound Osh4 structure may represent a structural intermediate between the two conformations.


Assuntos
Colesterol/análogos & derivados , Proteínas de Membrana/química , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Sítios de Ligação , Colesterol/síntese química , Colesterol/química , Cristalografia por Raios X , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...