Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(6): e61728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975527

RESUMO

Background Bioactive glass, which can form strong bonds with tissues, particularly bones, has become pivotal in tissue engineering. Incorporating biologically active ions like selenium enhances its properties for various biomedical applications, including bone repair and cancer treatment. Selenium's antioxidative properties and role in bone health make it a promising addition to biomaterial. Aim The present study was aimed at the preparation and characterization of selenium-doped bioglass. Materials and methods Tetraethyl orthosilicate (TEOS) was mixed with ethanol, water, and nitric acid to form a silica network and then supplemented with calcium nitrate, selenium acid sodium nitrate, and orthophosphoric acid. Sequential addition ensured specific functionalities. After sintering at 300 °C for three hours, the viscous solution transformed into powdered selenium-doped bioglass. Characterization involved scanning electron microscope (SEM) for microstructure analysis, attenuated total reflection infrared spectroscopy (ATR-IR) for molecular structure, and X-ray diffraction (XRD) for crystal structure analysis. Results SEM analysis of selenium-doped bioglass reveals a uniform distribution of selenium dopants in an amorphous structure, enhancing bioactivity through spherical particles with consistent size, micro-porosity, and roughness, facilitating interactions with biological fluids and tissues. ATR-IR analysis shows peaks corresponding to Si-O-Si and P-O bonds, indicating the presence of phosphate groups essential for biomedical applications within the bioglass network. XRD analysis confirms the amorphous nature of selenium-doped bioglass, with shifts in diffraction peaks confirming selenium incorporation without significant crystallization induction. Conclusion The selenium-infused bioglass displays promising versatility due to its amorphous structure, potentially enhancing interactions with biological fluids and tissues. Further research is needed to assess its impact on bone regeneration activity.

2.
Cureus ; 16(5): e60407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38883108

RESUMO

BACKGROUND: Nanotechnology enables precise manipulation of matter at the molecular level, with nanoparticles offering diverse applications in medicine and beyond. Green synthesis methods, utilizing natural sources like plant extracts, are favored for their eco-friendliness. Zinc oxide (ZnO) nanoparticles are recognized for their ability to combat microbes and reduce inflammation, which holds promise for biomedical applications. Catharanthus roseus, renowned for its medicinal properties, warrants further exploration in oral health management due to its anti-inflammatory and antioxidant attributes. AIM: The current study aimed to synthesize Catharanthus roseus-mediated ZnO nanoparticles and to evaluate their anti-inflammatory and antioxidant activity. MATERIALS AND METHODS: Catharanthus roseus powder (1 g) was dissolved in distilled water (100 ml), heated at 60°C for 15-20 minutes, and filtered to obtain 20 ml extract. ZnO nanoparticles were synthesized by adding 0.594 g ZnO powder to 50 ml water, mixed with plant extract, and stirred for 72 hours, and the resulting solution was centrifuged. Nanoparticles were collected and analyzed for Fourier-transform infrared spectroscopy (FTIR) using Bruker's Alpha II FTIR spectrometer (Bruker, Billerica, Massachusetts, United States), antioxidant, and anti-inflammatory activities. RESULTS: FTIR analysis revealed characteristic peaks indicative of functional groups present in Catharanthus roseus-mediated ZnO nanoparticles, including O-H, N-O, C-O, C=C, and C≡C-H. Anti-inflammatory activity evaluation showed inhibition ranging from 48% to 89%, with the maximum inhibition at 50 µL concentration. Similarly, antioxidant activity ranged from 62% to 88%, with the maximum inhibition also seen at 50 µL concentration. CONCLUSION: Both assays effectively showcased the superior anti-inflammatory and antioxidant activity of the Catharanthus roseus-incorporated ZnO nanoparticles extract compared to the control. This suggests their potential as a viable therapeutic agent for further evaluation.

3.
Cureus ; 16(4): e57844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38721191

RESUMO

BACKGROUND: The primary goal of periodontal therapy is to facilitate the regeneration of tissues damaged by periodontal disease. In recent years, there has been a growing utilization of guided tissue regeneration (GTR) membranes with bioabsorbable properties as these membranes are increasingly employed to guide the growth of gingival tissue away from the root surface. Both resorbable and non-resorbable membranes currently employed act as physical barriers, preventing the ingrowth of connective and epithelial tissues into the defect and thereby facilitating periodontal tissue regeneration. OBJECTIVE: This study aimed to develop a polymeric hydrogel membrane reinforced with tricalcium phosphate (TCP)-alginate and assess its potential for periodontal regeneration. MATERIALS AND METHODS: TCP nanoparticles were incorporated into the alginate mixture to form TCP alginate. Subsequently, the mixture was cross-linked with calcium chloride to produce a TCP-alginate polymeric hydrogel membrane. The membrane underwent hemocompatibility analysis, and also scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analyses were done. RESULTS: The SEM analysis revealed granulations and a bonded thread-like structure in the membrane, indicative of favorable conditions for cell attachment necessary for periodontal regeneration. FTIR analysis showed characteristic peaks in the spectrum, including those attributed to phosphate ion (PO4-3) at 1000.85 cm-1 and 600 cm-1, indicating the presence of ß-TCP phases. Hemocompatibility assessment demonstrated a hemolysis rate of less than 5% for the TCP-alginate membrane, which is found to be within the limits. CONCLUSION: The developed TCP-reinforced alginate membrane exhibited hemocompatibility and safety, suggesting its suitability for utilization in periodontal therapy as an effective regenerative material.

4.
Cureus ; 16(3): e56507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646344

RESUMO

PURPOSE: The study aimed to analyze whether adding Cissus quadrangularis (CQ) extract and the extracellular matrix of ovine tendon (TENDON) increases the regenerative potential of mesenchymal stem cells produced in hyaluronic acid (HA) scaffolds for tenogenesis. MATERIALS AND METHODS: Fifty grams of powdered CQ was mixed with 250 mL of ethanol to prepare the extract. Two grams of hyaluronic acid powder was added to 100 mL of distilled water to make the HA solution. The ovine tendon was decellularized using a mixture of 10% phosphate-buffered saline (PBS), sodium dodecyl sulfate (SDS), and Triton-X. The hydrogel samples were prepared by mixing the extracellular matrix of tendon, HA, and CQ, after which they were divided into study groups such as HA, HA + CQ, HA + TENDON, and HA + CQ + TENDON. Scanning electron microscopy (SEM) analysis, swelling analysis, differentiation analysis, compression test, compatibility assay, and tenogenesis assay were later conducted. RESULTS: The morphology of the samples was analyzed using SEM. Low levels of swelling of the hydrogels were observed. Cells were found to be viable and showed good differentiation and tenogenesis. Optimal compression levels were observed, and the properties of the prepared hydrogels were satisfactory. CONCLUSION: The results suggest that the addition of CQ considerably increases the tenogenic potential of the extracellular matrix/HA scaffold. Hence, it can be used as a regenerative material for periodontal tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...