Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
EBioMedicine ; 105: 105185, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848648

RESUMO

BACKGROUND: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.

2.
Front Immunol ; 15: 1394114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873610

RESUMO

Introduction: Several effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and implemented in the population. However, the current production capacity falls short of meeting global demand. Therefore, it is crucial to further develop novel vaccine platforms that can bridge the distribution gap. AVX/COVID-12 is a vector-based vaccine that utilizes the Newcastle Disease virus (NDV) to present the SARS-CoV-2 spike protein to the immune system. Methods: This study aims to analyze the antigenicity of the vaccine candidate by examining antibody binding and T-cell activation in individuals infected with SARS-CoV-2 or variants of concern (VOCs), as well as in healthy volunteers who received coronavirus disease 2019 (COVID-19) vaccinations. Results: Our findings indicate that the vaccine effectively binds antibodies and activates T-cells in individuals who received 2 or 3 doses of BNT162b2 or AZ/ChAdOx-1-S vaccines. Furthermore, the stimulation of T-cells from patients and vaccine recipients with AVX/COVID-12 resulted in their proliferation and secretion of interferon-gamma (IFN-γ) in both CD4+ and CD8+ T-cells. Discussion: The AVX/COVID-12 vectored vaccine candidate demonstrates the ability to stimulate robust cellular responses and is recognized by antibodies primed by the spike protein present in SARS-CoV-2 viruses that infected patients, as well as in the mRNA BNT162b2 and AZ/ChAdOx-1-S vaccines. These results support the inclusion of the AVX/COVID-12 vaccine as a booster in vaccination programs aimed at addressing COVID-19 caused by SARS-CoV-2 and its VOCs.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Ativação Linfocitária , Vírus da Doença de Newcastle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Vírus da Doença de Newcastle/imunologia , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Ativação Linfocitária/imunologia , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Vacina BNT162/imunologia , Vacinação , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo
3.
EBioMedicine ; 104: 105153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805853

RESUMO

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade Celular , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Anticorpos Antivirais/imunologia , Feminino , Adulto , Masculino , Linfócitos T/imunologia , Imunização Secundária , Interferon gama/metabolismo , Nucleoproteínas/imunologia , Adulto Jovem , Vírus da Influenza A/imunologia
4.
Vaccine ; 42(14): 3365-3373, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38627145

RESUMO

The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.


Assuntos
Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Epitopos Imunodominantes , Influenza Humana , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Masculino , Adulto , Epitopos Imunodominantes/imunologia , Pessoa de Meia-Idade , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Adulto Jovem , Fatores Etários , Fatores Sexuais , Adolescente , Estudos de Coortes , Idoso , Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue
6.
Nat Commun ; 14(1): 7745, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008801

RESUMO

Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with antigenically divergent H1N1 strains. Adjuvanted whole inactivated vaccines are given intramuscularly in various two- and three-dose regimens. Three doses of heterologous monovalent H1N1 vaccine result in seroprotective neutralizing antibodies against 71% of a diverse panel of human and swine H1 strains, detectable antibodies against 88% of strains, and sterile cross-clade immunity against two heterologous challenge strains. This strategy outperforms any two-dose regimen and is as good or better than giving three doses of matched trivalent vaccine. Neutralizing antibodies are H1-specific, and the second heterologous booster enhances reactivity with conserved epitopes in the HA head. We show that even the most traditional influenza vaccines can offer surprisingly broad protection if they are administered in an alternative way.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
7.
Proc Natl Acad Sci U S A ; 120(44): e2314905120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871218

RESUMO

Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Animais , Camundongos , Hemaglutininas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Orthomyxoviridae/metabolismo , Influenza Humana/prevenção & controle , Vacinação , Imunoglobulina G , Epitopos
8.
Sci Adv ; 9(37): eadi4753, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703367

RESUMO

Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Animais , Camundongos , Hemaglutininas , Anticorpos , Vacinação , Epitopos Imunodominantes
9.
Front Bioeng Biotechnol ; 11: 1097349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342504

RESUMO

Seasonal influenza viruses account for 1 billion infections worldwide every year, including 3-5 million cases of severe illness and up to 650,000 deaths. The effectiveness of current influenza virus vaccines is variable and relies on the immunodominant hemagglutinin (HA) and to a lesser extent on the neuraminidase (NA), the viral surface glycoproteins. Efficient vaccines that refocus the immune response to conserved epitopes on the HA are needed to tackle infections by influenza virus variants. Sequential vaccination with chimeric HA (cHA) and mosaic HA (mHA) constructs has proven to induce immune responses to the HA stalk domain and conserved epitopes on the HA head. In this study, we developed a bioprocess to manufacture cHA and mHA inactivated split vaccines and a method to quantify HA with a prefusion stalk based on a sandwich enzyme-linked immunosorbent assay. Virus inactivation with beta-propiolactone (ßPL) and splitting with Triton X-100 yielded the highest amount of prefusion HA and enzymatically active NA. In addition, the quantity of residual Triton X-100 and ovalbumin (OVA) was reduced to very low levels in the final vaccine preparations. The bioprocess shown here provides the basis to manufacture inactivated split cHA and mHA vaccines for pre-clinical research and future clinical trials in humans, and can also be applied to produce vaccines based on other influenza viruses.

10.
Front Immunol ; 14: 1194073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313413

RESUMO

Objective: Antibodies elicited by seasonal influenza vaccines mainly target the head of hemagglutinin (HA). However, antibodies against the stalk domain are cross-reactive and have been proven to play a role in reducing influenza disease severity. We investigated the induction of HA stalk-specific antibodies after seasonal influenza vaccination, considering the age of the cohorts. Methods: A total of 166 individuals were recruited during the 2018 influenza vaccine campaign (IVC) and divided into groups: <50 (n = 14), 50-64 (n = 34), 65-79 (n = 61), and ≥80 (n = 57) years old. Stalk-specific antibodies were quantified by ELISA at day 0 and day 28 using recombinant viruses (cH6/1 and cH14/3) containing an HA head domain (H6 or H14) from wild bird origin with a stalk domain from human H1 or H3, respectively. The geometric mean titer (GMT) and the fold rise (GMFR) were calculated, and differences were assessed using ANOVA adjusted by the false discovery rate (FDR) and the Wilcoxon tests (p <0.05). Results: All age groups elicited some level of increase in anti-stalk antibodies after receiving the influenza vaccine, except for the ≥80-year-old cohort. Additionally, <65-year-old vaccinees had higher group 1 antibody titers versus group 2 before and after vaccination. Similarly, vaccinees within the <50-year-old group showed a higher increase in anti-stalk antibody titers when compared to older individuals (≥80 years old), especially for group 1 anti-stalk antibodies. Conclusion: Seasonal influenza vaccines can the induction of cross-reactive anti-stalk antibodies against group 1 and group 2 HAs. However, low responses were observed in older groups, highlighting the impact of immunosenescence in adequate humoral immune responses.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Hemaglutininas , Formação de Anticorpos , Influenza Humana/prevenção & controle , Anticorpos
11.
NPJ Vaccines ; 8(1): 67, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164959

RESUMO

There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.

12.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075129

RESUMO

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Pandemias
13.
Sci Transl Med ; 15(683): eabo2847, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791207

RESUMO

NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , RNA Mensageiro/genética , Anticorpos Antivirais
14.
J Virol ; 97(1): e0107022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533948

RESUMO

Current influenza virus vaccines have to be closely matched to circulating strains to provide good protection, and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding breadth of these antibodies with commonly used immunological methods can be challenging. Here, we analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a large number of group 1 hemagglutinins but also group 2 and influenza B virus hemagglutinins. In CVIA057, different vaccine modalities, including a live attenuated influenza virus vaccine and inactivated influenza virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to induce. IMPORTANCE The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic, or emerging pandemic influenza viruses would be an extremely useful public health tool. Here, we test a technology designed to measure the breadth of antibody responses induced by this new class of vaccines.


Assuntos
Reações Cruzadas , Vacinas contra Influenza , Influenza Humana , Humanos , Adjuvantes Imunológicos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza B , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vírus da Influenza A
15.
NPJ Vaccines ; 7(1): 160, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496417

RESUMO

A phase 1 clinical trial to test the immunogenicity of a chimeric group 1 HA (cHA) universal influenza virus vaccine targeting the conserved stalk domain of the hemagglutinin of influenza viruses was carried out. Vaccination with adjuvanted-inactivated vaccines induced high anti-stalk antibody titers. We sought to identify gene expression signatures that correlate with such induction. Messenger-RNA sequencing in whole blood was performed on the peripheral blood of 53 vaccinees. We generated longitudinal data on the peripheral blood of 53 volunteers, at early (days 3 and 7) and late (28 days) time points after priming and boosting with cHAs. Differentially expressed gene analysis showed no differences between placebo and live-attenuated vaccine groups. However, an upregulation of genes involved in innate immune responses and type I interferon signaling was found at day 3 after vaccination with inactivated adjuvanted formulations. Cell type deconvolution analysis revealed a significant enrichment for monocyte markers and different subsets of dendritic cells as mediators for optimal B cell responses and significant increase of anti-stalk antibodies in sera. A significant upregulation of immunoglobulin-related genes was only observed after administration of adjuvanted vaccines (either as primer or booster) with specific induction of anti-stalk IGVH1-69. This approach informed of specific immune signatures that correlate with robust anti-stalk antibody responses, while also helping to understand the regulation of gene expression induced by cHA proteins under different vaccine regimens.

16.
Microbiol Spectr ; 10(3): e0153822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35658571

RESUMO

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Camundongos , Vírus da Doença de Newcastle/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
17.
Vaccine ; 40(26): 3621-3632, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577631

RESUMO

Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus (NDV) vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Wuhan-Hu-1. The spike protein was stabilized and incorporated into NDV virions by removing the polybasic furin cleavage site, introducing the transmembrane domain and cytoplasmic tail of the fusion protein of NDV, and introducing six prolines for stabilization in the prefusion state. Vaccine production and clinical development was initiated in Vietnam, Thailand, and Brazil. Here the interim results from the first stage of the randomized, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial conducted at the Hanoi Medical University (Vietnam) are presented. Healthy adults aged 18-59 years, non-pregnant, and with self-reported negative history for SARS-CoV-2 infection were eligible. Participants were randomized to receive one of five treatments by intramuscular injection twice, 28 days apart: 1 µg +/- CpG1018 (a toll-like receptor 9 agonist), 3 µg alone, 10 µg alone, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited adverse events (AEs) during 7 days and subject-reported AEs during 28 days after each vaccination. Investigators further reviewed subject-reported AEs. Secondary outcomes were immunogenicity measures (anti-spike immunoglobulin G [IgG] and pseudotyped virus neutralization). This interim analysis assessed safety 56 days after first vaccination (day 57) in treatment-exposed individuals and immunogenicity through 14 days after second vaccination (day 43) per protocol. Between March 15 and April 23, 2021, 224 individuals were screened and 120 were enrolled (25 per group for active vaccination and 20 for placebo). All subjects received two doses. The most common solicited AEs among those receiving active vaccine or placebo were all predominantly mild and included injection site pain or tenderness (<58%), fatigue or malaise (<22%), headache (<21%), and myalgia (<14%). No higher proportion of the solicited AEs were observed for any group of active vaccine. The proportion reporting vaccine-related AEs during the 28 days after either vaccination ranged from 4% to 8% among vaccine groups and was 5% in controls. No vaccine-related serious adverse event occurred. The immune response in the 10 µg formulation group was highest, followed by 1 µg + CpG1018, 3 µg, and 1 µg formulations. Fourteen days after the second vaccination, the geometric mean concentrations (GMC) of 50% neutralizing antibody against the homologous Wuhan-Hu-1 pseudovirus ranged from 56.07 IU/mL (1 µg, 95% CI 37.01, 84.94) to 246.19 IU/mL (10 µg, 95% CI 151.97, 398.82), with 84% to 96% of vaccine groups attaining a ≥ 4-fold increase over baseline. This was compared to a panel of human convalescent sera (N = 29, 72.93 95% CI 33.00-161.14). Live virus neutralization to the B.1.617.2 (Delta) variant of concern was reduced but in line with observations for vaccines currently in use. Since the adjuvant has shown modest benefit, GMC ratio of 2.56 (95% CI, 1.4-4.6) for 1 µg +/- CpG1018, a decision was made not to continue studying it with this vaccine. NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg dose was advanced to phase 2 along with a 6 µg dose. The 10 µg dose was not selected for evaluation in phase 2 due to potential impact on manufacturing capacity. ClinicalTrials.gov NCT04830800.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Imunização Passiva , Imunogenicidade da Vacina , Pessoa de Meia-Idade , Vírus da Doença de Newcastle/genética , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados/efeitos adversos , Vietnã , Adulto Jovem , Soroterapia para COVID-19
18.
Proc Natl Acad Sci U S A ; 119(21): e2200821119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594401

RESUMO

Influenza virus hemagglutinin (HA) has been the primary target for influenza vaccine development. Broadly protective antibodies targeting conserved regions of the HA unlock the possibility of generating universal influenza immunity. Two group 2 influenza A chimeric HAs, cH4/3 and cH15/3, were previously designed to elicit antibodies to the conserved HA stem. Here, we show by X-ray crystallography and negative-stain electron microscopy that a broadly protective antistem antibody can stably bind to cH4/3 and cH15/3 HAs, thereby validating their potential as universal vaccine immunogens. Furthermore, flexibility was observed in the head domain of the chimeric HA structures, suggesting that antibodies could also potentially interact with the head interface epitope. Our structural and binding studies demonstrated that a broadly protective antihead trimeric interface antibody could indeed target the more open head domain of the cH15/3 HA trimer. Thus, in addition to inducing broadly protective antibodies against the conserved HA stem, chimeric HAs may also be able to elicit antibodies against the conserved trimer interface in the HA head domain, thereby increasing the vaccine efficacy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle
19.
Lancet Infect Dis ; 22(7): 1062-1075, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461522

RESUMO

BACKGROUND: One strategy to develop a universal influenza virus vaccine is to redirect the immune system to the highly conserved haemagglutinin stalk domain by sequentially administering vaccines expressing chimeric (c) haemagglutinins with a conserved stalk domain and divergent head domain, to which humans are naive. We aimed to assess the reactogenicity, safety, and immunogenicity of adjuvanted and unadjuvanted investigational supra-seasonal universal influenza virus vaccines (SUIVs) in healthy young adults. METHODS: In this observer-masked, randomised, controlled, phase 1-2 trial, we recruited adults aged 18-39 years with no clinically significant conditions from six centres in Belgium and the USA. Participants were randomly assigned to ten equally sized groups via an online system with the MATerial Excellence programme. Vaccines contained heterosubtypic group 1 H8, H5, or H11 haemagglutinin heads, an H1 haemagglutinin stalk, and an N1 neuraminidase (cH8/1N1, cH5/1N1, and cH11/1N1; haemagglutinin dose 15 µg/0·5 mL), administered on days 1 and 57, with a month 14 booster. SUIVs were evaluated in the sequences: cH8/1N1-placebo-cH5/1N1, cH5/1N1-placebo-cH8/1N1, or cH8/1N1-cH5/1N1-cH11/1N1, adjuvanted with either AS03 or AS01, or not adjuvanted. The last group received inactivated quadrivalent influenza vaccine (IIV4)-placebo-IIV4. Primary outcomes were safety (analysed in the exposed population) and immunogenicity in terms of the anti-H1 stalk humoral response at 28 days after vaccination (analysed in the per-protocol population, defined as participants who received the study vaccines according to the protocol). This trial is registered with ClinicalTrials.gov, NCT03275389. FINDINGS: Between Sept 25, 2017, and March 26, 2020, 507 eligible participants were enrolled. 468 (92%) participants received at least one dose of study vaccine (exposed population), of whom 244 (52%) were included in the per-protocol population at final analysis at month 26. The safety profiles of all chimeric vaccines were clinically acceptable, with no safety concerns identified. Injection-site pain was the most common adverse event, occurring in 84-96% of participants receiving an adjuvanted SUIV or non-adjuvanted IIV4 and in 40-50% of participants receiving a non-adjuvanted SUIV. Spontaneously reported adverse events up to 28 days after vaccination occurred in 36-60% of participants, with no trends observed for any group. 17 participants had a serious adverse event, none of which were considered to be causally related to the vaccine. Anti-H1 stalk antibody titres were highest in AS03-adjuvanted groups, followed by AS01-adjuvanted and non-adjuvanted groups, and were higher after cH8/1N1 than after cH5/1N1 and after a two-dose primary schedule than after a one-dose schedule. Geometric mean concentrations by ELISA ranged from 21 938·1 ELISA units/mL (95% CI 18 037·8-26 681·8) in the IIV4-placebo-IIV4 group to 116 596·8 ELISA units/mL (93 869·6-144 826·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the first dose and from 15 105·9 ELISA units/mL (12 007·7-19 003·6) in the non-adjuvanted cH5/1N1-placebo-cH8/1N1 group to 74 639·7 ELISA units/mL (59 986·3-92 872·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the second dose. INTERPRETATION: The stalk domain seems to be a rational target for development of a universal influenza virus vaccine via administration of chimeric haemagglutinins with head domains to which humans are naive. FUNDING: GlaxoSmithKline Biologicals.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Anticorpos Antivirais , Hemaglutininas , Humanos , Imunogenicidade da Vacina , Vírion , Adulto Jovem
20.
bioRxiv ; 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350201

RESUMO

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA