RESUMO
Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.
Assuntos
Biomassa , Incêndios , Pradaria , Herbivoria , Animais , Poaceae/fisiologia , ÁfricaRESUMO
Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Recuperação e Remediação Ambiental/métodos , Biodiversidade , Mudança ClimáticaRESUMO
Mutualisms often define ecosystems, but they are susceptible to human activities. Combining experiments, animal tracking, and mortality investigations, we show that the invasive big-headed ant (Pheidole megacephala) makes lions (Panthera leo) less effective at killing their primary prey, plains zebra (Equus quagga). Big-headed ants disrupted the mutualism between native ants (Crematogaster spp.) and the dominant whistling-thorn tree (Vachellia drepanolobium), rendering trees vulnerable to elephant (Loxodonta africana) browsing and resulting in landscapes with higher visibility. Although zebra kills were significantly less likely to occur in higher-visibility, invaded areas, lion numbers did not decline since the onset of the invasion, likely because of prey-switching to African buffalo (Syncerus caffer). We show that by controlling biophysical structure across landscapes, a tiny invader reconfigured predator-prey dynamics among iconic species.
Assuntos
Formigas , Equidae , Cadeia Alimentar , Leões , Mirmecófitas , Simbiose , Animais , Formigas/fisiologia , Elefantes , BúfalosRESUMO
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.
Assuntos
Biodiversidade , Recuperação e Remediação Ambiental , Herbivoria , PlantasRESUMO
AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.
Assuntos
Lagartos , Animais , Lagartos/genética , Ecossistema , Bahamas , Fenótipo , DietaRESUMO
Differences in the bacterial communities inhabiting mammalian gut microbiomes tend to reflect the phylogenetic relatedness of their hosts, a pattern dubbed phylosymbiosis. Although most research on this pattern has compared the gut microbiomes of host species across biomes, understanding the evolutionary and ecological processes that generate phylosymbiosis requires comparisons across phylogenetic scales and under similar ecological conditions. We analysed the gut microbiomes of 14 sympatric small mammal species in a semi-arid African savanna, hypothesizing that there would be a strong phylosymbiotic pattern associated with differences in their body sizes and diets. Consistent with phylosymbiosis, microbiome dissimilarity increased with phylogenetic distance among hosts, ranging from congeneric sets of mice and hares that did not differ significantly in microbiome composition to species from different taxonomic orders that had almost no gut bacteria in common. While phylosymbiosis was detected among just the 11 species of rodents, it was substantially weaker at this scale than in comparisons involving all 14 species together. In contrast, microbiome diversity and composition were generally more strongly correlated with body size, dietary breadth, and dietary overlap in comparisons restricted to rodents than in those including all lineages. The starkest divides in microbiome composition thus reflected the broad evolutionary divergence of hosts, regardless of body size or diet, while subtler microbiome differences reflected variation in ecologically important traits of closely related hosts. Strong phylosymbiotic patterns arose deep in the phylogeny, and ecological filters that promote functional differentiation of cooccurring host species may disrupt or obscure this pattern near the tips.
Assuntos
Microbioma Gastrointestinal , Lagomorpha , Microbiota , Animais , Filogenia , Microbioma Gastrointestinal/genética , Mamíferos/genética , Evolução Biológica , Microbiota/genética , Roedores , Bactérias , RNA Ribossômico 16S/genéticaRESUMO
Cooperative interactions may frequently be reinforced by "partner fidelity feedback," in which high- or low-quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant-animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two of many sinks to which a host-plant allocates its resources. By investigating how partners to host-plants impact two fundamental plant resources, carbon and water, we can better characterize plant-partner fidelity and understand how plant-partner mutualisms may be modulated by resource dynamics. In Laikipia, Kenya, four ant species compete for Acacia drepanolobium host-plants. These ants differ in multiple traits, from nectar consumption to host-plant protection. Using a 5-year ant removal experiment, we compared carbon fixation, leaf water status, and stem non-structural carbohydrate concentrations for adult ant-plants with and without ant partners. Removal treatments showed that the ants differentially mediate tree carbon and/or water resources. All three ant species known to be aggressive against herbivores were linked to benefits for host-plant resources, but only the two species that defend but do not prune the host, Crematogaster mimosae and Tetraponera penzigi, increased tree carbon fixation. Of these two species, only the nectivore C. mimosae increased tree simple sugars. Crematogaster nigriceps, which defends the tree but also castrates flowers and prunes meristems, was linked only to lower tree water stress approximated by pre-dawn leaf water potential. In contrast to those defensive ants, Crematogaster sjostedti, a poor defender that displaces other ants, was linked to lower tree carbon fixation. Comparing the effects of the four ant species across control trees suggests that differential ant occupancy drives substantial differences in carbon and water supply among host trees. Our results highlight that ant partners can positively or negatively impact carbon and/or water relations for their host-plant, and we discuss the likelihood that carbon- and water-related partner fidelity feedback loops occur across ant-plant mutualisms.
Assuntos
Acacia , Formigas , Simbiose , Animais , HerbivoriaRESUMO
Across the globe, biological invasions have disrupted mutualisms, producing reverberating consequences for ecosystems. Although invasive species frequently trigger mutualism disruptions, few studies have quantified the demographic mechanisms by which mutualism breakdown may generate population effects. In a Kenyan savanna, the invasive big-headed ant (Pheidole megacephala) has disrupted a foundational mutualism between the monodominant whistling-thorn tree (Acacia drepanolobium) and native ants (Crematogaster spp.) that deter browsing by large mammalian herbivores. We conducted experiments to quantify the demographic consequences of this mutualism disruption in the presence and absence of large mammalian herbivores. Invasion by P. megacephala exacerbated population declines of A. drepanolobium, primarily through decreased survival and reproduction of adult trees. However, these fitness reductions were small compared to those resulting from the presence of large mammalian herbivores, which negatively impacted growth and survival. Contrary to expectation, the expulsion of metabolically costly Crematogaster mutualists by P. megacephala did not result in higher population growth rates for trees protected from large mammalian herbivores. Our results suggest that invasive P. megacephala may impose a direct metabolic cost to trees exceeding that of native mutualists while providing no protection from browsing by large mammalian herbivores. Across landscapes, we expect that invasion by P. megacephala will reduce A. drepanolobium populations, but that the magnitude and demographic pathways of this effect will hinge on the presence and abundance of browsers.
Assuntos
Acacia , Formigas , Besouros , Animais , Demografia , Ecossistema , Quênia , Mamíferos , Simbiose , ÁrvoresRESUMO
Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semiarid Kenyan savanna. The goals of the UHURU experiment are to measure the effects of removing successively smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to nine randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are MEGA (exclusion of megaherbivores, elephant and giraffe), MESO (exclusion of herbivores ≥40 kg), and TOTAL (exclusion of herbivores ≥5 kg). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first 5 years of data were published previously (Ecological Archives E095-064) and have been used in numerous studies. Since that publication, we have (1) continued to collect data following the original protocols, (2) improved the taxonomic resolution and accuracy of plant and small-mammal identifications, and (3) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008-2019). Data include daily rainfall data throughout the experiment; annual surveys of understory plant communities; annual censuses of woody-plant communities; annual measurements of individually tagged woody plants; monthly monitoring of flowering and fruiting phenology; every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung surveys. There are no copyright restrictions; notification of when and how data are used is appreciated and users of UHURU data should cite this data paper when using the data.
Assuntos
Ecossistema , Herbivoria , Animais , Pradaria , Herbivoria/fisiologia , Quênia , MamíferosRESUMO
African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages-declining wildlife populations and their displacement by livestock-may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana-tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.
Assuntos
Cynanchum/crescimento & desenvolvimento , Ecossistema , Preferências Alimentares , Herbivoria/fisiologia , Árvores/crescimento & desenvolvimento , África , Animais , Animais Selvagens , Elefantes , Recuperação e Remediação Ambiental , Girafas , Humanos , GadoRESUMO
The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2-1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.
Assuntos
Elefantes , Girafas , Animais , Ecossistema , Herbivoria , FilogeniaRESUMO
Pollination by animals is a key ecosystem service1,2 and interactions between plants and their pollinators are a model system for studying ecological networks,3,4 yet plant-pollinator networks are typically studied in isolation from the broader ecosystems in which they are embedded. The plants visited by pollinators also interact with other consumer guilds that eat stems, leaves, fruits, or seeds. One such guild, large mammalian herbivores, are well-known ecosystem engineers5-7 and may have substantial impacts on plant-pollinator networks. Although moderate herbivory can sometimes promote plant diversity,8 potentially benefiting pollinators, large herbivores might alternatively reduce resource availability for pollinators by consuming flowers,9 reducing plant density,10 and promoting somatic regrowth over reproduction.11 The direction and magnitude of such effects may hinge on abiotic context-in particular, rainfall, which modulates the effects of ungulates on vegetation.12 Using a long-term, large-scale experiment replicated across a rainfall gradient in central Kenya, we show that a diverse assemblage of native large herbivores, ranging from 5-kg antelopes to 4,000-kg African elephants, limited resource availability for pollinators by reducing flower abundance and diversity; this in turn resulted in fewer pollinator visits and lower pollinator diversity. Exclusion of large herbivores increased floral-resource abundance and pollinator-assemblage diversity, rendering plant-pollinator networks larger, more functionally redundant, and less vulnerable to pollinator extinction. Our results show that species extrinsic to plant-pollinator interactions can indirectly and strongly alter network structure. Forecasting the effects of environmental change on pollination services and interaction webs more broadly will require accounting for the effects of extrinsic keystone species.
Assuntos
Pradaria , Herbivoria , Plantas , Polinização , África , Animais , FloresRESUMO
Despite international regulation, polychlorinated biphenyls (PCBs) are routinely detected at levels threatening human and environmental health. While previous research has emphasized trophic transfer as the principle pathway for PCB accumulation, our study reveals the critical role that non-trophic interactions can play in controlling PCB bioavailability and biomagnification. In a 5-month field experiment manipulating saltmarsh macro-invertebrates, we show that suspension-feeding mussels increase concentrations of total PCBs and toxic dioxin-like coplanars by 11- and 7.5-fold in sediment and 10.5- and 9-fold in cordgrass-grazing crabs relative to no-mussel controls, but do not affect PCB bioaccumulation in algae-grazing crabs. PCB homolog composition and corroborative dietary analyses demonstrate that mussels, as ecosystem engineers, amplify sediment contamination and PCB exposure for this burrowing marsh crab through non-trophic mechanisms. We conclude that these ecosystem engineering activities and other non-trophic interactions may have cascading effects on trophic biomagnification pathways, and therefore exert strong bottom-up control on PCB biomagnification up this coastal food web.
Assuntos
Bivalves/metabolismo , Cadeia Alimentar , Bifenilos Policlorados/metabolismo , Animais , Bioacumulação , Ecossistema , Sedimentos Geológicos/análise , Invertebrados , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Sudeste dos Estados UnidosRESUMO
Invasive ants shape assemblages and interactions of native species, but their effect on fundamental ecological processes is poorly understood. In East Africa, Pheidole megacephala ants have invaded monodominant stands of the ant-tree Acacia drepanolobium, extirpating native ant defenders and rendering trees vulnerable to canopy damage by vertebrate herbivores. We used experiments and observations to quantify direct and interactive effects of invasive ants and large herbivores on A. drepanolobium photosynthesis over a 2-year period. Trees that had been invaded for ≥ 5 years exhibited 69% lower whole-tree photosynthesis during key growing seasons, resulting from interaction between invasive ants and vertebrate herbivores that caused leaf- and canopy-level photosynthesis declines. We also surveyed trees shortly before and after invasion, finding that recent invasion induced only minor changes in leaf physiology. Our results from individual trees likely scale up, highlighting the potential of invasive species to alter ecosystem-level carbon fixation and other biogeochemical cycles.
Assuntos
Acacia , Formigas , Animais , Ciclo do Carbono , Ecossistema , SimbioseRESUMO
Supercolonial ants are among the largest cooperative units in nature, attaining extremely high densities. How these densities feed back into their population growth rates and how abundance and extrinsic factors interact to affect their population dynamics remain open questions. We studied how local worker abundance and extrinsic factors (rain, tree density) affect population growth rate and spread in the invasive big-headed ant, which is disrupting a keystone mutualism between acacia trees and native ants in parts of East Africa. We measured temporal changes in big-headed ant (BHA) abundance and rates of spread over 20 months along eight transects, extending from areas behind the front with high BHA abundances to areas at the invasion front with low BHA abundances. We used models that account for negative density dependence and incorporated extrinsic factors to determine what variables best explain variation in local population growth rates. Population growth rates declined with abundance, however, the strength of density dependence decreased with abundance. We suggest that weaker density dependence at higher ant abundances may be due to the beneficial effect of cooperative behavior that partially counteracts resource limitation. Rainfall and tree density had minor effects on ant population dynamics. BHA spread near 50 m/year, more than previous studies reported and comparable to rates of spread of other supercolonial ants. Although we did not detect declines in abundance in areas invaded a long time ago (> 10 years), continued monitoring of abundance at invaded sites may help to better understand the widespread collapse of many invasive ants.
Assuntos
Acacia , Formigas , Animais , Pradaria , Dinâmica Populacional , SimbioseRESUMO
Biological invasions can lead to the reassembly of communities and understanding and predicting the impacts of exotic species on community structure and functioning are a key challenge in ecology. We investigated the impact of a predatory species of invasive ant, Pheidole megacephala, on the structure and function of a foundational mutualism between Acacia drepanolobium and its associated acacia-ant community in an East African savanna. Invasion by P. megacephala was associated with the extirpation of three extrafloral nectar-dependent Crematogaster acacia ant species and strong increases in the abundance of a competitively subordinate and locally rare acacia ant species, Tetraponera penzigi, which does not depend on host plant nectar. Using a combination of long-term monitoring of invasion dynamics, observations and experiments, we demonstrate that P. megacephala directly and indirectly facilitates T. penzigi by reducing the abundance of T. penzigi's competitors (Crematogaster spp.), imposing recruitment limitation on these competitors, and generating a landscape of low-reward host plants that favor colonization and establishment by the strongly dispersing T. penzigi. Seasonal variation in use of host plants by P. megacephala may further increase the persistence of T. penzigi colonies in invaded habitat. The persistence of the T. penzigi-A. drepanolobium symbiosis in invaded areas afforded host plants some protection against herbivory by elephants (Loxodonta africana), a key browser that reduces tree cover. However, elephant damage on T. penzigi-occupied trees was higher in invaded than in uninvaded areas, likely owing to reduced T. penzigi colony size in invaded habitats. Our results reveal the mechanisms underlying the disruption of this mutualism and suggest that P. megacephala invasion may drive long-term declines in tree cover, despite the partial persistence of the ant-acacia symbiosis in invaded areas.
Assuntos
Acacia , Formigas , Animais , Herbivoria , Quênia , SimbioseRESUMO
Founder populations often show rapid divergence from source populations after colonizing new environments. Epigenetic modifications can mediate phenotypic responses to environmental change and may be an important mechanism promoting rapid differentiation in founder populations. Whereas many long-term studies have explored the extent to which divergence between source and founder populations is genetically heritable versus plastic, the role of epigenetic processes during colonization remains unclear. To investigate epigenetic modifications in founding populations, we experimentally colonized eight small Caribbean islands with brown anole lizards (Anolis sagrei) from a common source population. We then quantitatively measured genome-wide DNA methylation in liver tissue using reduced representation bisulfite sequencing of individuals transplanted onto islands with high- versus low-habitat quality. We found that lizard sex and habitat quality explained a significant proportion of epigenetic variation. Differentially methylated cytosines mapped to genes that encode proteins with functions likely to be relevant to habitat change (e.g., signal transduction, immune response, circadian rhythm). This study provides experimental evidence of a relationship between epigenetic responses and the earliest stages of colonization of novel environments in nature and suggests that habitat quality influences the nature of these epigenetic modifications.
Assuntos
Ecossistema , Epigênese Genética , Ilhas , Lagartos/genética , Adaptação Fisiológica , Animais , Metilação de DNA , Feminino , Efeito Fundador , Fígado/metabolismo , Lagartos/metabolismo , MasculinoRESUMO
Biological invasions are both a pressing environmental challenge and an opportunity to investigate fundamental ecological processes, such as the role of top predators in regulating biodiversity and food-web structure. In whole-ecosystem manipulations of small Caribbean islands on which brown anole lizards (Anolis sagrei) were the native top predator, we experimentally staged invasions by competitors (green anoles, Anolis smaragdinus) and/or new top predators (curly-tailed lizards, Leiocephalus carinatus). We show that curly-tailed lizards destabilized the coexistence of competing prey species, contrary to the classic idea of keystone predation. Fear-driven avoidance of predators collapsed the spatial and dietary niche structure that otherwise stabilized coexistence, which intensified interspecific competition within predator-free refuges and contributed to the extinction of green-anole populations on two islands. Moreover, whereas adding either green anoles or curly-tailed lizards lengthened food chains on the islands, adding both species reversed this effect-in part because the apex predators were trophic omnivores. Our results underscore the importance of top-down control in ecological communities, but show that its outcomes depend on prey behaviour, spatial structure, and omnivory. Diversity-enhancing effects of top predators cannot be assumed, and non-consumptive effects of predation risk may be a widespread constraint on species coexistence.