Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(8): 103769, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38917605

RESUMO

Magang geese are typical short-day breeders whose reproductive behaviors are significantly influenced by photoperiod. Exposure to a long-day photoperiod results in testicular regression and spermatogenesis arrest in Magang geese. To investigate the epigenetic influence of DNA methylation on the seasonal testicular regression in Magang geese, we conducted whole-genome bisulfite sequencing and transcriptome sequencing of testes across 3 reproductive phases during a long-day photoperiod. A total of 250,326 differentially methylated regions (DMR) were identified among the 3 comparison groups, with a significant number showing hypermethylation, especially in intronic regions of the genome. Integrating bisulfite sequencing with transcriptome sequencing data revealed that DMR-associated genes tend to be differentially expressed in the testes, highlighting a potential regulatory role for DNA methylation in gene expression. Furthermore, there was a significant negative correlation between changes in the methylation of CG DMRs and changes in the expression of their associated genes in the testes. A total of 3,359 DMR-associated differentially expressed genes (DEG) were identified; functional enrichment analyses revealed that motor proteins, MAPK signaling pathway, ECM-receptor interaction, phagosome, TGF-beta signaling pathway, and calcium signaling might contribute to the testicular regression process. GSEA revealed that the significantly enriched activated hallmark gene set was associated with apoptosis and estrogen response during testicular regression, while the repressed hallmark gene set was involved in spermatogenesis. Our study also revealed that methylation changes significantly impacted the expression level of vitamin A metabolism-related genes during testicular degeneration, with hypermethylation of STRA6 and increased calmodulin levels indicating vitamin A efflux during the testicular regression. These findings were corroborated by pyrosequencing and real-time qPCR, which revealed that the vitamin A metabolic pathway plays a pivotal role in testicular degeneration under long-day conditions. Additionally, metabolomics analysis revealed an insufficiency of vitamin A and an abnormally high level of oxysterols accumulated in the testes during testicular regression. In conclusion, our study demonstrated that testicular degeneration in Magang geese induced by a long-day photoperiod is linked to vitamin A homeostasis disruption, which manifests as the hypermethylation status of STRA6, vitamin A efflux, and a high level of oxysterol accumulation. These findings offer new insights into the effects of DNA methylation on the seasonal testicular regression that occurs during long-day photoperiods in Magang geese.

2.
Poult Sci ; 103(4): 103413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442558

RESUMO

Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHß and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.


Assuntos
Fotoperíodo , Vacinas , Animais , Patos/fisiologia , Galinhas , Reprodução , Imunização/veterinária
3.
BMC Genomics ; 25(1): 197, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373887

RESUMO

BACKGROUND: In cold and temperate zones, seasonal reproduction plays a crucial role in the survival and reproductive success of species. The photoperiod influences reproductive processes in seasonal breeders through the hypothalamic-pituitary-gonadal (HPG) axis, in which the mediobasal hypothalamus (MBH) serves as the central region responsible for transmitting light information to the endocrine system. However, the cis-regulatory elements and the transcriptional activation mechanisms related to seasonal activation of the reproductive axis in MBH remain largely unclear. In this study, an artificial photoperiod program was used to induce the HPG axis activation in male quails, and we compared changes in chromatin accessibility changes during the seasonal activation of the HPG axis. RESULTS: Alterations in chromatin accessibility occurred in the mediobasal hypothalamus (MBH) and stabilized at LD7 during the activation of the HPG axis. Most open chromatin regions (OCRs) are enriched mainly in introns and distal intergenic regions. The differentially accessible regions (DARs) showed enrichment of binding motifs of the RFX, NKX, and MEF family of transcription factors that gained-loss accessibility under long-day conditions, while the binding motifs of the nuclear receptor (NR) superfamily and BZIP family gained-open accessibility. Retinoic acid signaling and GTPase-mediated signal transduction are involved in adaptation to long days and maintenance of the HPG axis activation. According to our footprint analysis, three clock-output genes (TEF, DBP, and HLF) and the THRA were the first responders to long days in LD3. THRB, NR3C2, AR, and NR3C1 are the key players associated with the initiation and maintenance of the activation of the HPG axis, which appeared at LD7 and tended to be stable under long-day conditions. By integrating chromatin and the transcriptome, three genes (DIO2, SLC16A2, and PDE6H) involved in thyroid hormone signaling showed differential chromatin accessibility and expression levels during the seasonal activation of the HPG axis. TRPA1, a target of THRB identified by DAP-seq, was sensitive to photoactivation and exhibited differential expression levels between short- and long-day conditions. CONCLUSION: Our data suggest that trans effects were the main factors affecting gene expression during the seasonal activation of the HPG axis. This study could lead to further research on the seasonal reproductive behavior of birds, particularly the role of MBH in controlling seasonal reproductive behavior.


Assuntos
Cromatina , Codorniz , Animais , Masculino , Estações do Ano , Codorniz/genética , Cromatina/genética , Cromatina/metabolismo , Hipotálamo/metabolismo , Reprodução/genética , Fotoperíodo
4.
BMC Genomics ; 24(1): 355, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365488

RESUMO

BACKGROUND: Domestic geese are seasonal breeders and have the lowest reproductive capacity among all poultry species. Magang geese is a topical short-day breeder, short photoperiod exposure stimulates its reproductive activity while long photoperiod inhibits. To explore epigenetic change that could influence reproductive activity, we performed whole genome bisulfite sequencing and transcriptome sequencing in the hypothalamus at three reproductive stages during long-light exposure in male Magang geese. RESULTS: A total number of 10,602 differentially methylated regions (DMRs) were identified among three comparison groups. We observed that the vast majority of DMRs were enriched in intron regions. By integrating the BS-sequencing and RNA-seq data, the correlation between methylation changes of CG DMRs and expression changes of their associated genes was significant only for genes containing CG DMRs in their intron. A total of 278 DMR-associated DEGs were obtained among the three stages. KEGG analysis revealed that the DMR-associated DEGs were mainly involved in 11 pathways. Among them, the neuroactive ligand-receptor interaction pathway was significantly enriched in both two comparisons (RA vs.RD and RD vs.RI); the Wnt signaling pathway, apelin signaling pathway, melanogenesis, calcium signaling pathway, focal adhesion, and adherens junction were significantly enriched in the RA vs. RI comparison. In addition, the expression level of two serotonin-metabolic genes was significantly altered during reproductive axis inactivation by the methylation status of their promoter region (TPH2) and intron region (SLC18A2), respectively. These results were confirmed by Bisulfite sequencing PCR (BSP), pyrosequencing, and real-time qPCR, indicating that serotonin metabolic signaling may play a key role in decreasing the reproductive activity of Magang geese induced by long-light exposure. Furthermore, we performed a metabolomics approach to investigate the concentration of neurotransmitters among the three stages, and found that 5-HIAA, the last product of the serotonin metabolic pathway, was significantly decreased in the hypothalamus during RI. CONCLUSIONS: Our study reveals that the methylation status of the serotonin metabolic pathway in the hypothalamus is associated with reproductive inactivation, and provided new insight into the effect of DNA methylation on the reproductive regulation of the hypothalamus in Magang geese.


Assuntos
Metilação de DNA , Gansos , Animais , Masculino , Gansos/genética , Serotonina , Redes e Vias Metabólicas
5.
Anim Biotechnol ; 34(9): 4809-4818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37022011

RESUMO

Photoperiod is a key environmental factor in regulating bird reproduction and induces neuroendocrine changes through the hypothalamic-pituitary-gonadal (HPG) axis. OPN5, as a deep-brain photoreceptor, transmits light signals to regulate follicular development through TSH-DIO2/DIO3. However, the mechanism among OPN5, TSH-DIO2/DIO3, and VIP/PRL in the HPG axis underlying the photoperiodic regulation of bird reproduction is unclear. In this study, 72 laying quails with 8-week-old were randomly divided into the long-day (LD) group [16 light (L): 8 dark (D)] and the short-day (SD) group (8 L:16 D), and then samples were collected on d 1, d 11, d 22, and d 36 of the experiment. The results showed that compared with the LD group, the SD group significantly inhibited follicular development (P < 0.05), decreased the P4, E2, LH, and PRL in serum (P < 0.05), downregulated the expression of GnRHR, VIP, PRL, OPN5, DIO2, and LHß (P < 0.05), reduced the expression of GnRH and TSHß (P > 0.05), and promoted DIO3, GnIH gene expression (P < 0.01). The short photoperiod downregulates OPN5, TSHß, and DIO2 and upregulates DIO3 expression to regulate the GnRH/GnIH system. The downregulation of GnRHR and upregulation of GnIH resulted in a decrease in LH secretion, which withdrew the gonadotropic effects on ovarian follicles development. Slow down of follicular development and egg laying may also arise from lack of PRL potentiation to small follicle development under short days.


Assuntos
Fotoperíodo , Codorniz , Feminino , Animais , Codorniz/metabolismo , Reprodução/genética , Hormônio Liberador de Gonadotropina , Tireotropina
6.
Animals (Basel) ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200806

RESUMO

Lactation is a unique reproductive behavior in pigeons, with the crop serving as the organ responsible for secreting pigeon milk. Both male and female pigeons can produce crop milk and rear their offspring through a division of labor. Since the time of the secretion of pigeon crop milk is different in the process of feeding the young, whether the metabolism and formation of pigeon milk use the same mechanism is a very interesting scientific question. However, the metabolic dynamics and underlying genetic mechanisms involved in the formation of pigeon crop milk remain unclear, particularly during the incubation-feeding reproductive cycle. In this study, we integrated lactation-associated metabolism and transcriptome data from the crop tissues of both male and female pigeons during the brooding and feeding stages. We mapped the changes in metabolites related to milk formation in the crop tissues during these stages. Through metabolome profiling, we identified 1413 metabolites among 18 crop tissues. During the breeding cycles, the concentrations of estrone, L-ergothioneine, and L-histidine exhibited the most dynamic changes in females. In contrast, estrone, L-anserine, 1-methylhistidine, homovanillate, oxidized glutathione, and reducing glutathione showed the most dynamic changes in males. Gender-specific differences were observed in the metabolome, with several metabolites significantly differing between males and females, many of which were correlated with cytokine binding, immunity, and cytochrome P450 activity. Using this dataset, we constructed complex regulatory networks, enabling us to identify important metabolites and key genes involved in regulating the formation of pigeon milk in male and female pigeons, respectively. Additionally, we investigated gender-associated differences in the crop metabolites of pigeons. Our study revealed differences in the modulation of pigeon crop milk metabolism between males and females and shed light on the potential functions of male and female pigeon milk in the growth, development, and immunity of young pigeons, an area that has not been previously explored. In conclusion, our results provide new insights into the metabolic regulation of pigeon crop milk formation during the brooding and breeding stages. Furthermore, our findings lay the foundation for the accurate development of artificial pigeon milk.

7.
Poult Sci ; 101(12): 102227, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334429

RESUMO

Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird and GnIH can play a function in this process through the reproductive axis, and some studies suggest that GnIH may have a direct role at the gonadal level. To investigate the expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods, 72 healthy laying quails of 8-wk-old were randomly divided into long day (LD) group [16 light (L): 8 dark (D)] (n = 36) and short day (SD) group (8L:16D) (n = 36). Samples were collected from each group on d1, d11, d22, and d36 of the experiment. The result showed that short day treatment upregulated the level of GnIH in the gonads (P < 0.05), decreased the expression level of CYP19A1,3ß-HSD, StAR, LHR, and FSHR and increased the expression level of AMH, AMHR2, GDF9, and BMP15 to inhibit follicle development and ovulation, thus affecting the egg production performance of quails. In vitro culture of quail granulosa cells and treatment with different concentrations of GnIH (0, 1, 10, and 100 ng/mL) for 24 h. Result showed that GnIH inhibited the levels of FSHR, LHR, and steroid synthesis pathways in granulosa cells, upregulated the levels of AMHR2, GDF9, and BMP15. The results suggest that the inhibition of follicle development and reduced egg production in quail by short day treatment is due to GnIH acting at the gonadal level, and GnIH affected the steroid synthesis by inhibiting gonadotropin receptors.


Assuntos
Hormônios Hipotalâmicos , Fotoperíodo , Feminino , Animais , Codorniz/metabolismo , Ovário/metabolismo , Hormônios Hipotalâmicos/metabolismo , Galinhas/metabolismo
8.
Anim Reprod ; 19(3): e20220038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189166

RESUMO

Photoperiod is an important environmental factor affecting animal physiological function. Melatonin is an endogenous hormone that plays an important role in circadian and seasonal (or cyclical) rhythms and seasonal reproduction in mammals. To investigate the effects of melatonin on the reproductive performance of adult male mice under different photoperiods, sixty mice were randomly allotted to six groups: control (Light Dark, 12 L:12 D), control plus melatonin (MLD, 12 L:12 D), 24-hour continuous light (LL, 24 L:0 D), 24-hour continuous light plus melatonin (MLL 24 L:0 D), constant darkness (DD, 0 L:24 D), and constant darkness plus melatonin (MDD, 0 L:24 D). Normal saline (100 µL) was injected into the LD, LL, and DD groups at noon each day; the MLD, MLL, and MDD groups were injected with melatonin (1 mg/mL; 2 mg/kg·body weigh). After 24 hours of prolonged light exposure, testis morphology decreased, convoluted seminiferous tubules became sparse, the diameter of convoluted seminiferous tubules decreased, and the level of sex hormones decreased. After the administration of exogenous melatonin, testicular morphology and sex hormone levels decreased in the MLD group under normal light conditions. In the MLL group, the testicular tissue morphology returned to normal, the diameter of convoluted tubules increased, the hormone levels of LH (Luteinizing hormone) and MTL (melatonin) significantly increased (P<0.05), and th0e gene expressions of LHß and Mtnr1A (Melatonin receptors 1A) increased. There was almost no difference in the MDD group under continuous darkness. In conclusion, melatonin can damage the reproductive performance of male mice under normal light conditions, while exogenous melatonin can alleviate and protect the testicular injury of male mice under continuous light conditions.

9.
Poult Sci ; 101(10): 102024, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986948

RESUMO

This study sought to understand the regulation mechanism of OPN5 through the TSH-DIO2/DIO3 pathway mediated photoperiod on the breeding activity of short-day breeding birds. In this study, the reproductive activity of Magang goose was regulated by artificial light, and the reproductive activity of the ganders were determined according to the daily laying rate of female geese. The testicular development and the serum reproductive hormone concentrations of ganders were measured during the reproductive period (d 0), the reproductive degeneration period (d 13 and 27) and the resting period (d 45). The mRNA and protein expression patterns of OPN5, the HPG axis reproductive genes, and TSH-DIO2/DIO3 pathway related genes were examined. Results showed that the laying rate of geese and the gonadal indices (GSI) decreased gradually after the photoperiod increased. Histological observation found that the spermatogenic function of the testis was normal on d 0 and 13, while degeneration occurred by d 27 and 45. Serum testosterone, FSH, and LH concentration showed a slight increase on d 13, followed by a sharp decrease on d 27 and 45 (P < 0.01), while PRL concentrations were low on d 0 and 13, and increased rapidly on d 27 and 45 (P < 0.01).The expression pattern of GnRH, FSH, LH, and THRß mRNA were similar, with high levels on d 0 and 13 and a decreasing trend on d 27 and 45 (P < 0.05 or P < 0.01); and GnRHR mRNA levels were higher on d 13 (P < 0.05), but then had decreased by d 27 and 45 (P < 0.01). The expression pattern of GnIH and GnIHR was similar, which was opposite to that of GnRHR. VIP, PRL, and PRLR increased gradually and peaked on d 45 (P < 0.01). The expression trend of TRH, TSHß, and DIO2 was similar to that of GnRHR, and the expression abundance increased on d 13, and then decreased on d 27 and 45. GnRH protein expression was significantly higher than during the other 3 periods (P < 0.01) while the GnIH protein levels were extremely low on d 0, had gradually increased by d 13, and significantly increased by d 27 and 45 (P < 0.01). The protein expression trends of THR and DIO2 were similar to that of GNIH. DIO3 protein expression was low on d 0 and 13, and increased by d 27 and 45. These results suggest that when the photoperiod increased, the hypothalamus OPN5 gene and protein were upregulated and the pituitary TSHß, TSHR, and hypothalamus THRß, TRH, and DIO2 were downregulated, and thus the reproductive activity of geese was inhibited.


Assuntos
Gansos , Fotoperíodo , Animais , Galinhas/metabolismo , Feminino , Hormônio Foliculoestimulante , Gansos/fisiologia , Hormônio Liberador de Gonadotropina , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/fisiologia , Testosterona , Tireotropina
10.
Front Physiol ; 13: 813881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733985

RESUMO

Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird. Birds translates photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered as candidate DBPs involving in regulation of seasonal reproduction in birds. However, little is known about the effect of OPN5 in non-seasonal breeding birds. Thus, we pondered on whether OPN5 regulating follicular development through TSH-DIO2/DIO3 system responds to different photoperiods in non-seasonal laying ducks. As an ideal non-seasonal breeding bird, a total of 120 mountain ducks were randomly divided into three groups and treated respectively to a different photoperiod: group S (8 L:16D), group C (17 L:7D), and group L (24 L:0D). The ducks were caged in a fully enclosed shelter with the same feeding conditions for each group, free water and limited feeding (150 g per duck each day). Samples were collected from each group at d 0, d 5, d 8, d 20, and d 35 (n = 8). The ducks in 24 h photoperiod had the highest laying rate and the lowest feed-to-egg ratio, while the ducks in 8 h photoperiod had the lowest laying rate and the highest feed-to-egg ratio. Long-day photoperiod for 24 h significantly increased the ovarian index and GnRH, LH, E2, and P4 levels in serum; short-day photoperiod for 8 h increased testosterone levels in serum. Compared with 8 h photoperiod, long-day photoperiod significantly or highly significantly increased the mRNA level and protein expression of OPN5 in the hypothalamus of long-day photoperiod on d 35 (p < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DI O 3 were negatively correlated with OPN5. The results revealed that OPN5 mediated the effect of light on follicular development through the TSH-DIO2/DIO3 pathway, the expression of OPN5 increased with light duration and improved the efficiency of the HPG axis to promote follicular development in mountain ducks.

11.
Front Physiol ; 13: 824228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399254

RESUMO

Both hypothalamic neurotransmitters and serum steroid hormones are impacted by photoperiod and have effects on physiology and seasonal reproductive. However, the relationship between circulating gonadal steroids and hypothalamic neurotransmitters underlying different photoperiod is still unclear. To further understand the crosstalk of neurotransmitters and steroids in seasonal reproduction, metabolic changes of 27 neurotransmitters concentrated in hypothalamus tissues and 42 steroids hormones in serum were assessed during two artificial photoperiodic programs. The results showed that photoperiod induce testicular atrophy and recrudescence. In L-to-S groups, significantly decreased levels of testosterone concentration were found in serum (P < 0.001) and increased 11-Dehydrocorticosterone (P < 0.05); Testosterone were almost undetectable at SD_14d. In addition, the hypothalamus exhibited significantly increased arginine and 4-aminobutyric acid (GABA) concentration and decreased serotonin and epinephrine content (P < 0.01 or P < 0.05). Accordingly, serum testosterone and androstenedione became detectable at LD_3d in the S-to-L group and were markedly increase at LD_7d. Furthermore, Serum androstenedione showed a significant increase with long light expose (P < 0.01). Additionally, the hypothalamus exhibited both significantly increased L.Tryptophan and phenylalanine concentration, as well as decreased L-glutamine and L-glutamine.acid content (P < 0.01 or P < 0.05). Serotonin metabolism showed significant differences between L-to-S group and S-to-L group. Furthermore, in the correlation analysis, serum testosterone had a positive correlation with 5-Hydroxyindole-3-acetic acid (5-HIAA), while Androstenedione was significantly negative with L.Tryptophan in L-to-S (P < 0.05). However, in S-to-L group, serum testosterone showed strong negative correlation with both serotonin and 5-HIAA (P < 0.05), but positive correlation with L.Tryptophan (P < 0.01), while Androstenedione was significantly negative correlation with both serotonin (P < 0.05) and L-Glutamine (P < 0.01). Photoperiod also had significant effects on the mRNA expression. We found significant differences in gene expression patterns of both serotonin signaling and steroid biosynthesis, while MAOB, NR5A1, and 3ß-HSD showed an opposite tendency between two groups. Taken together, our results revealed that circulating gonadal steroids and hypothalamic neurotransmitters were significantly impact quail's seasonal reproduction. Circulating gonadal steroids have different effects on neurotransmitter at different photoperiodism, which may coordinately influence the seasonal reproduction of quails.

12.
Poult Sci ; 99(4): 1805-1812, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32241460

RESUMO

Besides on the reproductive performance, the light also has an important effect on the growth in birds. In the present study, we for the first time investigated effects of colored light-emitting diodes (LED) on both growth performance and fecal microbiota in meat geese. We randomly selected a total of 120 geese at birth (0-day), divided them into 3 groups evenly (i.e., 40 geese each group), and then reared them under 3 colored light-emitting diodes (i.e., blue, red, and white) with the same photoperiod for 9 wk, respectively. We collected fecal samples at the experimental day 35 and 63, respectively. We observed that geese in blue light had higher body weight than those in red and white lights at the early stage of the experiment but showed lower body weight at the late stage, particularly at day 63 (P < 0.05). Interestingly, we found that the relative abundances of 3 dominant bacteria phyla, Firmicutes, Proteobacteria, and Cyanobacteria, were comparable among 3 groups at day 35, while at day 63, the blue light group had the significantly (P < 0.05) lowest and highest abundance for Firmicutes and Proteobacteria, respectively. Functional enrichment analyses revealed that the fecal microbiota in the red light group was mainly involved in metabolism at day 35, whereas at day 63, the fecal microbiota were engaged into membrane transportation and transcription. In contrast, the blue light group had more enriched pathways relevant with membrane transportation at day 63 than day 35 and had several pathways involved in metabolism at day 63 as well. Collectively, our results revealed that the light with different colors affects the growth performance of geese via the gut microbiota, which in turn influences the digestion and absorption of geese.


Assuntos
Cianobactérias/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal , Gansos/crescimento & desenvolvimento , Gansos/microbiologia , Iluminação , Proteobactérias/metabolismo , Animais , Cor , Fezes/microbiologia , Luz , Distribuição Aleatória
13.
J Interferon Cytokine Res ; 38(8): 333-340, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30052119

RESUMO

Double-stranded RNA-dependent protein kinase (PKR) is an important antiviral IFN-stimulated gene (ISGs) that recognizes double-stranded RNA (dsRNA) and mediates inhibition of translation initiation and protein synthesis in various types of viral infection. In this study, the complete coding sequence (CDS) of goose PKR (goPKR) is identified and characterized. The open reading frame (ORF) of goPKR is 1668 bp, which encodes a polypeptide of 555 amino acids. The sequence identity results demonstrate that the goose PKR is most closely related to duck PKR gene, with nucleotide identities of 91.6%, whereas nucleotide identity of the goose PKR to chicken, human, and mouse PKR is 76.4%, 51.9%, and 52.0%, respectively. Interestingly, the deduced amino acid sequence of goose PKR contains 3 main structure domains, including 2 double-strand RNA-binding motif (dsRBM) domains and one serine/threonine protein kinase domain. This is similar to the chicken and mammals, whereas it is different from duck PKR protein, which contains only one dsRBM1 domain and one serine/threonine protein kinase domain. Quantitative real-time PCR analysis indicates that goose PKR mRNA is widely expressed in all sampled tissues. It is highly expressed in the blood, spleen, lung, and bursa of Fabricius and jejunum and is slightly expressed in heart, muscle, trachea, and brain. The results of confocal microscopy suggest that PKR-EGFP is mainly localized in the cytoplasm, and overexpression of goPKR protein significantly reduces Newcastle disease virus (NDV) replication (viral copies and viral titer) in goose embryo fibroblasts. These findings show that goose PKR is an important antiviral ISG, involved in the antiviral innate immune defense to NDV in geese.


Assuntos
Antivirais/farmacologia , Gansos/genética , Perfilação da Expressão Gênica , Vírus da Doença de Newcastle/efeitos dos fármacos , Peptídeos/farmacologia , eIF-2 Quinase/genética , eIF-2 Quinase/farmacologia , Animais , Antivirais/química , Antivirais/metabolismo , Vírus da Doença de Newcastle/metabolismo , Peptídeos/química , Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Replicação Viral/efeitos dos fármacos , eIF-2 Quinase/química , eIF-2 Quinase/metabolismo
14.
Metabolism ; 60(2): 292-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20303127

RESUMO

Preß-1 high-density lipoprotein (HDL) is an acceptor of peripheral free cholesterol and thus a participant in reverse cholesterol transport. Because patients with diabetes may have defects in reverse cholesterol transport, we hypothesized that (1) preß-1 HDL might be decreased in diabetes and (2) because niacin improves reverse cholesterol transport and may stimulate preß-1 HDL maturation, niacin would further decrease steady-state levels of preß-1 HDL in diabetes. Absolute levels of preß-1 HDL mass were measured using an isotopic dilution-ultrafiltration assay that measures apolipoprotein (apo) A-I after physically isolating preß-1. Plasma apo A-I concentration and routine lipids were also evaluated in 11 diabetic patients. Diabetic subjects have a nearly 50% reduction of circulating levels of preß-1 HDL to 36 ± 22 (1 SD) µg/mL compared with our previously published values of 73 ± 44 µg/mL in 136 healthy subjects. After niacin therapy, there was a further 17% reduction of preß-1 HDL levels to 30 ± 26 µg/mL (P < .026) compared with baseline. The percentage of preß-1 HDL in diabetic patients, as a percentage of total apo A-I, was about half of the normal value of 6.1% ± 3.6%; after niacin in diabetic patients, the percentage further decreased from 3.3% ± 2.1% to 2.3% ± 1.9% (P < .003). Absolute levels of apo A-I were similar in diabetic patients (1.14 ± 0.29) and healthy subjects (1.24 ± 0.24), and were unchanged by niacin in diabetic patients. We conclude with the novel observations that diabetes is associated with significantly reduced levels of preß-1 HDL and that, after niacin treatment, a further lowering of preß-1 HDL levels occur. Several altered mechanisms of RCT in diabetes are consistent with low levels of preß-1 HDL both before and after niacin treatment.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Lipoproteínas de Alta Densidade Pré-beta/sangue , Hipolipemiantes/uso terapêutico , Niacina/uso terapêutico , Idoso , Apolipoproteína A-I/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Pravastatina/uso terapêutico , Estudos Retrospectivos , Sinvastatina/uso terapêutico
15.
Acta Cytol ; 53(2): 153-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19365967

RESUMO

OBJECTIVE: To determine the incidence of clinically significant lesions on subsequent histologic follow-up in high-risk, predominantly minority patients with atypical glandular cells (AGC). STUDY DESIGN: A retrospective study was done on conventional Pap smears diagnosed as AGC of endocervical origin (AGC-EC), AGC of endometrial origin (AGC-EM) and AGC not otherwise specified (AGC-NOS) between January 1, 2003, and December 31, 2005. Histologic diagnoses were correlated with cytologic diagnoses. RESULT: Confirmed AGC cases were divided into 4 categories: 187 AGC-NOS, 169 AGC-EC, 68 AGC and atypical squamous cells of undetermined significance (ASCUS) and 36 AGC-EM. A total of 105 patients (22.8%) had significant precancerous (cervical intraepithelial neoplasia [CIN] 2/3, adenocarcinoma in situ [AIS]) or malignant (carcinoma) histologic outcomes. CIN 2/3 was the most common significant histologic outcome in women with AGC and ASCUS and patients <35 years with AGC. Endometrial neoplasia was the most common significant outcome in women with AGC-NOS and AGC-EM Pap results and in AGC patients > or =35. In women with AGC-EC Pap results, glandular cervical neoplasia occurred in 8.3% and CIN 2/3 in 5.9% offollow-up biopsies. CONCLUSION: AGC subtype and age significantly affect the probability of precancerous and malignant follow-up findings and anatomic site of neoplastic lesions. Access to newer screening technologies such as high-risk HPVDNA testing and liquid-based cytology will likely benefit such high-risk populations.


Assuntos
Lesões Pré-Cancerosas/patologia , Displasia do Colo do Útero/patologia , Neoplasias do Colo do Útero/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Grupos Minoritários , Teste de Papanicolaou , Estudos Retrospectivos , Fatores de Risco , Estados Unidos , Neoplasias do Colo do Útero/epidemiologia , Esfregaço Vaginal , Displasia do Colo do Útero/epidemiologia
16.
Arch Pathol Lab Med ; 131(11): 1679-85, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17979486

RESUMO

CONTEXT: The atherogenic lipid phenotype is a major cardiovascular risk factor, but normal values do not exist derived from 1 analysis in a general study group. OBJECTIVE: To determine normal values of all of the atherogenic lipid phenotype parameters using subjects from a general study group. DESIGN: One hundred two general subjects were used to determine their atherogenic lipid phenotype using polyacrylamide gradient gels. RESULTS: Low-density lipoprotein (LDL) size revealed 24% of subjects express LDL phenotype B, defined as average LDL peak particle size 258 A or less; however, among the Chinese subjects, the expression of the B phenotype was higher at 44% (P = .02). For the total group, mean LDL size was 265 +/- 11 A (1 SD); however, histograms were bimodal in both men and women. After excluding subjects expressing LDL phenotype B, because they are at increased cardiovascular risk and thus are not completely healthy, LDL histograms were unimodal and the mean LDL size was 270 +/- 7 A. A small, dense LDL concentration histogram (total group) revealed skewing; thus, phenotype B subjects were excluded, for the rationale described previously, and the mean value was 13 +/- 9 mg/dL (0.33 +/- 0.23 mmol/L). High-density lipoprotein (HDL) cholesterol histograms were bimodal in both sexes. After removing subjects as described previously or if HDL cholesterol levels were less than 45 mg/dL, histograms were unimodal and revealed a mean HDL cholesterol value of 61 +/- 12 mg/dL (1.56 +/- 0.31 mmol/L). HDL 2, HDL 2a, and HDL 2b were similarly evaluated. CONCLUSIONS: Approximate normal values for the atherogenic lipid phenotype, similar to those derived from cardiovascular endpoint trials, can be determined if those high proportions of subjects with dyslipidemic cardiovascular risk are excluded.


Assuntos
Aterosclerose/sangue , Lipídeos/sangue , Fenótipo , Adulto , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dislipidemias/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valores de Referência , Fatores de Risco
17.
Metabolism ; 51(9): 1120-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200755

RESUMO

We tested the hypotheses that extended-release niacin is effective for the separate treatments of abnormalities in low-density liprotein (LDL) size, high-density lipoprotein (HDL)-2, and lipoprotein(a) [Lp(a)] without potential negative effects on glycated hemoglobin levels. The lipids that constitute the atherogenic lipid profile (ALP), such as triglycerides, small, dense LDL-cholesterol particle concentration, LDL particle size, total HDL-cholesterol (HDLc), HDL-2, and HDL-2 cholesterol concentration, as well as total LDL-cholesterol (LDLc) and Lp(a), were measured in 36 diabetic patients with primary abnormalities of LDL particle size (n = 25), HDL-2 (n = 23), and/or Lp(a) (n = 12) before and after extended-release niacin treatment. LDL particle size and HDL-2 were measured using polyacrylamide gradient gel electrophoreses and Lp(a) was measured by enzyme-linked immunosorbent assay (ELISA). After extended-release niacin, LDL peak particle diameter increased from 25.2 +/- 0.6 nm to 26.1 +/- 0.7 nm (P <.0001); small, dense LDLc concentration decreased from 30 +/- 17 mg/dL to 17 +/- 10 mg/dL (P <.0001); total HDLc increased from 42 +/- 9 mg/dL to 57 +/- 16 mg/dL (P <.0001); HDL-2 as the percent of total HDLc mass increased from 34% +/- 10% to 51% +/- 17% (P <.0001); and Lp(a) decreased from 37 +/- 10 mg/dL to 23 +/- 10 mg/dL (P <.001). Mean hemoglobin A(1c) level was improved during treatment from 7.5% +/- 1.6% to 6.5% +/- 0.9% (P <.0001). A subset of patients who had no change in hemoglobin A(1c) levels before and after treatment (6.8% +/- 1% v 6.7% +/- 1%; not significant) showed identical lipid changes. Twenty-two percent of patients were unable to tolerate extended-release niacin due to reversible side effects. These data indicate that in diabetic patients, extended-release niacin (1) is effective for separately treating diabetic dyslipidemias associated with abnormal LDL size, HDL-2, and Lp(a) independently of glycated hemoglobin levels; (2) must be used with modern and aggressive oral hypoglycemic agents or insulin treatment; and (3) is a major drug for the treatment of diabetic dyslipidemias because of its broad spectrum of effectiveness for the ALP and Lp(a).


Assuntos
Arteriosclerose/etiologia , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Lipídeos/sangue , Lipoproteína(a)/sangue , Niacina/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipolipemiantes/efeitos adversos , Hipolipemiantes/uso terapêutico , Lipoproteínas HDL/sangue , Lipoproteínas HDL2 , Masculino , Pessoa de Meia-Idade , Niacina/efeitos adversos , Niacina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...