Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Cancer Res ; 163: 39-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39271267

RESUMO

Unveiling the intricate interplay of cells in their native environment lies at the heart of understanding fundamental biological processes and unraveling disease mechanisms, particularly in complex diseases like cancer. Spatial transcriptomics (ST) offers a revolutionary lens into the spatial organization of gene expression within tissues, empowering researchers to study both cell heterogeneity and microenvironments in health and disease. However, current ST technologies often face limitations in either resolution or the number of genes profiled simultaneously. Integrating ST data with complementary sources, such as single-cell transcriptomics and detailed tissue staining images, presents a powerful solution to overcome these limitations. This review delves into the computational approaches driving the integration of spatial transcriptomics with other data types. By illuminating the key challenges and outlining the current algorithmic solutions, we aim to highlight the immense potential of these methods to revolutionize our understanding of cancer biology.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Análise de Célula Única/métodos , Animais , Microambiente Tumoral , Algoritmos
2.
ACS Nano ; 16(1): 317-327, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35019271

RESUMO

Simple RNA viruses self-assemble spontaneously and encapsulate their genome into a shell called the capsid. This process is mainly driven by the attractive electrostatics interaction between the positive charges on capsid proteins and the negative charges on the genome. Despite its importance and many decades of intense research, how the virus selects and packages its native RNA inside the crowded environment of a host cell cytoplasm in the presence of an abundance of nonviral RNA and other anionic polymers has remained a mystery. In this paper, we perform a series of simulations to monitor the growth of viral shells and find the mechanism by which cargo-coat protein interactions can impact the structure and stability of the viral shells. We show that coat protein subunits can assemble around a globular nucleic acid core by forming nonicosahedral cages, which have been recently observed in assembly experiments involving small pieces of RNA. We find that the resulting cages are strained and can easily be split into fragments along stress lines. This suggests that such metastable nonicosahedral intermediates could be easily reassembled into the stable native icosahedral shells if the larger wild-type genome becomes available, despite the presence of a myriad of nonviral RNAs.


Assuntos
Montagem de Vírus , Vírus , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , RNA/análise
3.
Biophys J ; 120(18): 3925-3936, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418368

RESUMO

The process of genome packaging in most of viruses is poorly understood, notably the role of the genome itself in the nucleocapsid structure. For simple icosahedral single-stranded RNA viruses, the branched topology due to the RNA secondary structure is thought to lower the free energy required to complete a virion. We investigate the structure of nucleocapsids packaging RNA segments with various degrees of compactness by small-angle x-ray scattering and cryotransmission electron microscopy. The structural differences are mild even though compact RNA segments lead on average to better-ordered and more uniform particles across the sample. Numerical calculations confirm that the free energy is lowered for the RNA segments displaying the larger number of branch points. The effect is, however, opposite with synthetic polyelectrolytes, in which a star topology gives rise to more disorder in the capsids than a linear topology. If RNA compactness and size account in part for the proper assembly of the nucleocapsid and the genome selectivity, other factors most likely related to the host cell environment during viral assembly must come into play as well.


Assuntos
RNA , Vírus , Genoma Viral , Nucleocapsídeo , RNA Viral/genética , Vírion/genética , Montagem de Vírus
4.
ACS Nano ; 14(3): 3170-3180, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32115940

RESUMO

Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially bind to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the question as to how virions are assembled into a highly ordered structure in the host cell. Using small-angle X-ray scattering, we find out that a disorder-order transition occurs under physiological conditions upon an increase in capsid protein concentrations. Our cryo-transmission electron microscopy reveals closed spherical shells containing in vitro transcribed viral RNA even at pH 7.5, in marked contrast with the previous observations. We use Monte Carlo simulations to explain this disorder-order transition and find that, as the shell grows, the structures of disordered intermediates in which the distribution of pentamers does not belong to the icosahedral subgroups become energetically so unfavorable that the caps can easily dissociate and reassemble, overcoming the energy barriers for the formation of perfect icosahedral shells. In addition, we monitor the growth of capsids under the condition that the nucleation and growth is the dominant pathway and show that the key for the disorder-order transition in both en masse and nucleation and growth pathways lies in the strength of elastic energy compared to the other forces in the system including protein-protein interactions and the chemical potential of free subunits. Our findings explain, at least in part, why perfect virions with icosahedral order form under different conditions including physiological ones.


Assuntos
Bromovirus/química , Proteínas do Capsídeo/química , DNA Viral/química , RNA Viral/química , Microscopia Crioeletrônica , DNA Viral/genética , Simulação de Dinâmica Molecular , Método de Monte Carlo , Tamanho da Partícula , RNA Viral/genética , Propriedades de Superfície
5.
Nanoscale ; 10(48): 22802-22809, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30516220

RESUMO

Understanding how highly symmetric, robust, monodisperse protein nano-cages self-assemble can have major applications in various areas of bio-nanotechnology, such as drug delivery, biomedical imaging and gene therapy. We develop a model to investigate the assembly of protein subunits into the structures with different sizes and symmetries. Using Monte Carlo simulation, we obtain global minimum energy structures. Our results suggest that the physical properties including the spontaneous curvature, flexibility and bending rigidity of coat proteins are sufficient to predict the size, symmetry and shape selectivity of the assembly products. Further, on a thermodynamic basis, we discuss the polymorphism of nano-cages observed in assembly experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...