Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-44, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39494675

RESUMO

Vibrational spectroscopy is a nondestructive analysis technique that depends on the periodic variations in dipole moments and polarizabilities resulting from the molecular vibrations of molecules/atoms. These methods have important advantages over conventional analytical techniques, including (a) their simplicity in terms of implementation and operation, (b) their adaptability to on-line and on-farm applications, (c) making measurement in a few minutes, and (d) the absence of dangerous solvents throughout sample preparation or measurement. Food safety is a concept that requires the assurance that food is free from any physical, chemical, or biological hazards at all stages, from farm to fork. Continuous monitoring should be provided in order to guarantee the safety of the food. Regarding their advantages, vibrational spectroscopic methods, such as Fourier-transform infrared (FTIR), near-infrared (NIR), and Raman spectroscopy, are considered reliable and rapid techniques to track food safety- and food authenticity-related issues throughout the food chain. Furthermore, coupling spectral data with chemometric approaches also enables the discrimination of samples with different kinds of food safety-related hazards. This review deals with the recent application of vibrational spectroscopic techniques to monitor various hazards related to various foods, including crops, fruits, vegetables, milk, dairy products, meat, seafood, and poultry, throughout harvesting, transportation, processing, distribution, and storage.

2.
Heliyon ; 10(7): e29202, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623209

RESUMO

Limonia acidissima Groff, commonly referred to as the Wood apple, is a tropical fruit belonging to Rutaceae family. Indigenous to Sri Lanka, India, and Myanmar, it is extensively cultivated throughout Southeast Asia. This fruit holds a profound historical significance in traditional medicine due to its exceptional nutritional and therapeutic attributes. Wood apple pulp is significantly abundant in ß-carotene, a precursor to vitamin A, and contains a substantial amount of vitamin B, including riboflavin and thiamine, as well as trace amounts of ascorbic acid (vitamin C). Moreover health-benefitting properties associated with L. acidissima, such as, antioxidant, hepatoprotective, antimicrobial, neuroprotective, antidiabetic, anti-inflammatory, anti-spermatogenic, analgesic, antiulcer, and antihyperlipidemic properties, are attributed to a diverse range of phytochemicals. These encompass polyphenolic compounds, saponins, phytosterols, tannins, triterpenoids, coumarins, amino acids, tyramine derivatives, and vitamins. From the findings of the various studies, it was observed that wood apple fruit shows significant anticancer activity by inhibiting the proliferation of cancer. Furthermore, wood apple finds wide-ranging commercial applications in the formulation of ready-to-serve beverages, syrups, jellies, chutneys, and various other food products. In summary, this review highlights the nutritional and phytochemical constituents of wood apple, depicts its antioxidant, anti-inflammatory, and anti-diabetic capabilities, and explores its potential in value-added product development. Nevertheless, it is crucial to acknowledge that the molecular mechanisms supporting these properties remain an underexplored domain. To ensure the safe integration of wood apple fruit into the realms of the food, cosmetics, and pharmaceutical sectors, rigorous clinical trials, including toxicity assessments, are required. These endeavors hold the potential to promote innovation and contribute significantly to both research and industrial sectors.

3.
Int J Biol Macromol ; 261(Pt 2): 129456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237828

RESUMO

Cotton stalk (CS) is a global agricultural residue, with an annual production of approximately 50 million tons, albeit with limited economic significance. The utilization of cellulose derived from CS has gained significant attention in green nanomaterial technologies. This interest stems from its unique properties, including biocompatibility, low density, minimal thermal expansion, eco-friendliness, renewability, and its potential as an alternative source for chemicals, petroleum, and biofuels. In this review, we delve into various extraction and characterization methods, the physicochemical attributes, recent advancements, and the applications of cellulose extracted from CS. Notably, the steam explosion method has proven to yield the highest cellulose content (82 %) from CS. Moreover, diverse physicochemical properties of cellulose can be obtained through different extraction techniques. Sulfuric acid hydrolysis, for instance, yields nanocrystalline cellulose fibers measuring 10-100 nm in width and 100-850 nm in length. Conversely, the steam explosion method yields cellulose fibers with dimensions of 10.7 µm in width and 1.2 mm in length. CS-derived products, including biochar, aerogel, dye adsorbents, and reinforcement fillers, find applications in various industries, such as environmental remediation and biodegradable packaging. This is primarily due to their ready availability, cost-effectiveness, and sustainable nature.


Assuntos
Celulose , Vapor , Celulose/química , Têxteis , Biotecnologia/métodos , Hidrólise
4.
Crit Rev Biotechnol ; 44(7): 1325-1349, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38228500

RESUMO

In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.


Assuntos
Bacteriófagos , Microbiologia de Alimentos , Bacteriófagos/fisiologia , Inocuidade dos Alimentos , Manipulação de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Indústria de Processamento de Alimentos , Humanos , Conservação de Alimentos/métodos , Indústria Alimentícia
5.
Chem Biodivers ; 20(11): e202301086, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851484

RESUMO

BACKGROUND: In Vedic context, Nirgundi (V. negundo) has been utilized for its anti-inflammatory, analgesic, and wound-healing properties. It has been employed to alleviate pain, treat skin conditions, and address various ailments. The plant's leaves, roots, and seeds have all found applications in traditional remedies. The knowledge of Nirgundi's medicinal benefits has been passed down through generations, and it continues to be a part of Ayurvedic and traditional medicine practices in India.


Assuntos
Fitoterapia , Vitex , Vitex/química , Medicina Tradicional , Índia , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise
6.
J Texture Stud ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798875

RESUMO

The objective of this study was to investigate how the various storage temperatures affected the physical properties, flow characteristics, microstructure, and glass transition temperature of spinach juice agglomerates. For this purpose, spray-dried spinach juice powders were processed to agglomerates by using a modified fluidized bed dryer (1.6 m/s airflow rate, 60°C drying air temperature, 20 min processing time, and with different binder solutions containing agents as maltodextrin, gum Arabic, and whey powder isolate). The analyses were carried out every month throughout 6 months while the spinach juice agglomerates were stored at temperatures of 4, 20, and 35°C. The results revealed that over the storage time, the moisture content and water activity values of the agglomerates were generally under 11% and 0.6, respectively. The color values generally showed a decreasing trend depending on the storage time. The solubility times of the samples stored at 4°C were longer than those of stored at other storage temperatures. The SJA-GA had the lowest HR and CI values and thus the best flowability properties during all storage times. There was no detectable change in the structures of SJA stored at 20°C according to the storage time. Throughout the storage time, it was discovered that the glass transition temperature of all spinach juice agglomerates was remarkably similar. Overall, the investigation revealed that storage at 35°C for 6 months might be suitable because it delivered the intended outcomes such as greater flowability and cohesiveness, and shorter wettability and solubility times.

7.
Food Chem ; 428: 136783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450955

RESUMO

Tea residues represent one of the major agricultural wastes that are generated after the processing of tea. They account for 21-28% of crude protein and are often discarded without the extraction of valuable proteins. Due to various bioactivity and functional properties, tea proteins are an excellent alternative to other plant-based proteins for usage as food supplements at a higher dosage. Moreover, their good gelation capacity is ideal for the manufacturing of dairy products, jellies, condensation protein, gelatin gel, bread, etc. The current study is the first to comprehend various tea protein extraction methods and their amino acid profile. The preparation of tea protein bioactive peptides and hydrolysates are summarized. Several functional properties (solubility, foaming capacity, emulsification, water/oil absorption capacity) and bioactivities (antioxidant, antihypertensive, antidiabetic) of tea proteins are emphasized.


Assuntos
Camellia sinensis , Camellia sinensis/química , Chá/química , Antioxidantes/química , Proteínas de Plantas , Peptídeos
8.
Food Sci Nutr ; 11(6): 3224-3234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324913

RESUMO

The increasing demand of rehydrated foods is due to its better storage stability at ambient conditions and not requiring refrigeration. Prior to drying at 55, 60, 65, and 70°C in a hot air tray dryer, hot water blanching (HB), steam blanching (SB), and microwave blanching (MB) were employed as pretreatments. Rehydration of dried pretreated sweet corn kernel was performed in boiling water. The pretreatments and drying temperatures were independent factors that affected the dependent factors such as rehydration ratio, total sugar, ascorbic acid, geometric mean diameter, color, sensory evaluation, water absorption, mass, and geometric mean diameter. Peleg, Weibull, and newly proposed models were considered to describe the change in moisture content during rehydration. The proposed model performed better than other models and indicated the rise in equilibrium moisture content of rehydrated sweet corn with an increase in dehydration temperature of sweet corn due to higher R 2 (0.994), and lower chi-square (0.005) and RMSE (0.064). The rehydrated sweet corn obtained from samples processed with microwave blanching and dehydration at 70°C showed higher retention of total sugar, ascorbic acid, geometric mean diameter, and color.

9.
Compr Rev Food Sci Food Saf ; 22(5): 4030-4052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306549

RESUMO

Aflatoxins are the most toxic natural mycotoxins discovered so far, posing a serious menace to the food safety and trading economy of the world, especially developing countries. How to effectively detoxify has persistently occupied a place on the list of "global hot-point" concerns. Among the developed detoxification methods, physical methods, as the authoritative techniques for aflatoxins degradation, could rapidly induce irreversible denaturation of aflatoxins. This review presents a brief overview of aflatoxins detection and degradation product structure identification methods. Four main safety evaluation methods for aflatoxins and degradation product toxicity assessment are highlighted combined with an update on research of aflatoxins decontamination in the last decade. Furthermore, the latest applications, degradation mechanisms and products of physical aflatoxin decontamination techniques including microwave heating, irradiation, pulsed light, cold plasma and ultrasound are discussed in detail. Regulatory issues related to "detoxification" are also explained. Finally, we put forward the challenges and future work in studying aflatoxin degradation based on the existing research. The purpose of supplying this information is to help researchers have a deeper understanding on the degradation of aflatoxins, break through the existing bottleneck, and further improve and innovate the detoxification methods of aflatoxins.


Assuntos
Aflatoxinas , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Alimentos , Inocuidade dos Alimentos , Manipulação de Alimentos/métodos
10.
J Texture Stud ; 54(4): 560-570, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883842

RESUMO

Jamun (Syzygium cumini L.) fruit is an underutilized source of bioactive phytochemicals. Therefore, preserving this fruit in various forms over the year is necessary. Spray drying can effectively preserve jamun juice; but the stickiness issue of fruit juice powder mainly arises during the drying, which may be overcome by using different carriers. Consequently, this experiment aimed to ascertain the effect of different carrier types (maltodextrin, gum arabic, whey protein concentrate, waxy starch, and maltodextrin: gum arabic) on the physical, flow, reconstitution, functional, and color stability of spray-dried jamun juice powder. The physical parameters of the produced powder such as moisture content, bulk, and tapped density were in the range of 2.57%-4.95% (w.b.), 0.29-0.50 and 0.45-0.63 g/mL, respectively. The powder yield ranged between 55.25% and 75.9%. The flow characteristics, Carr's index and Hausner ratio, were in the range of 20.89-35.90 and 1.26-1.56, respectively. Reconstitution attributes viz., wettability, solubility, hygroscopicity, and dispersibility were in the range of 90.3-199.7 s, 55.28%-95%, 15.23-25.86 g/100 g, and 70.97%-95.79%, respectively. The functional attributes include total anthocyanin, total phenol content, and encapsulation efficiency, were in the range of 75.13-110.01 mg/100 g, 129.48-215.02 g GAE/100 g, and 40.49%-74.07%, respectively. The L*, a*, and b* values ranged from 41.82 to 70.86, 14.33 to 23.04, -8.12 to -0.60, respectively. A combination of maltodextrin and gum arabic was found effective in producing jamun juice powder with appropriate physical, flow, functional, and color attributes.


Assuntos
Goma Arábica , Syzygium , Goma Arábica/química , Pós/análise , Dessecação , Frutas/química
11.
Foods ; 12(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766085

RESUMO

The fruit production and processing sectors produce tremendous amounts of by-products and waste that cause significant economic losses and an undesirable impact on the environment. The effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse gas emissions, thereby achieving sustainable development goals. These by-products contain a variety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants, polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive compounds can be extracted and used as value-added products in different industrial applications. The bioactive components extracted can be used in developing nutraceutical products, functional foods, or food additives. This review provides a comprehensive review of the recent developments in fruit waste valorization techniques and their application in food industries. The various extraction techniques, including conventional and emerging methods, have been discussed. The antioxidant and antimicrobial activities of the active compounds extracted and isolated from fruit waste have been described. The most important food industrial application of bioactive compounds extracted from fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on the topic are summarized.

12.
J Texture Stud ; 54(2): 173-205, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36757668

RESUMO

Texture is an important sensory attribute that drives consumer acceptance of any food material. In recent times consumers' demand for high-quality food urges food industries to provide food with consistent textural properties. However, texture measurement not just requires a trained sensory panel but also a considerable amount of time and effort. On the flip side, human observation could be subjective hence repeatability of the result may not be ensured and/or relied on. Contrary to that, objective methods for texture measurement are reliable and consistent, but are not suitable for in-line application and also destructive in nature. The mentioned crisis has made industries opt for nondestructive texture analysis techniques. In the past decade, considerable research has been carried out on nondestructive texture analysis methods such as micro-deformation, and acoustic and optical techniques, showing feasibility for in-line applications. The current review focuses on the working principles and most recent applications of nondestructive techniques for texture analysis of food products. Moreover, a detailed review of contact and noncontact-type texture measurement has been presented in this article. The literature survey is concluded with future research aspects and challenges involved in the commercialization of the nondestructive texture analysis techniques.


Assuntos
Qualidade dos Alimentos , Alimentos , Humanos , Tecnologia de Alimentos
13.
J Texture Stud ; 54(4): 599-612, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36849713

RESUMO

In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.


Assuntos
Manipulação de Alimentos , Produtos da Carne , Carne , Temperatura , Proteínas de Plantas
14.
Bioengineering (Basel) ; 10(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671686

RESUMO

Owing to the demand for the consumption of healthy extrudates, this study explored the infusion of neera (coconut inflorescence sap) honey in rice flour, corn flour and coconut milk residue blend-based extrudates. Neera honey, the concentrated coconut inflorescence sap, has numerous nutrients and a natural source of essential vitamins. Hence, the potential of neera honey as a biofortifying compound for the production of healthy extrudates was investigated. The rice and corn based extrudates supplemented with different concentration of neera honey have been prepared until the mix reaches 16 and 20% (w.b.) of feed moisture. Effect of addition of neera honey on the physical properties (expansion ratio, bulk density, specific length), functional properties (water absorption, water solubility, oil absorption), biochemical properties (total carbohydrates, total sugar, reducing sugar, phenolics, flavonoids, antioxidants), color parameters(L*, a*, b*), proximate compositions (moisture content, ash, protein, fat) and mineral profile of extrudates were recorded. Results suggest that addition of neera honey had a significant (p ˂ 0.05) impact on all the physico-chemical parameters evaluated. Incorporation of neera honey (feed moisture -20%) resulted in extrudates with less expansion, high bulk density and specific length, having high sugar, protein, phenolics, vitamin C and antioxidant activity. The combination of 60% rice flour + 25% corn flour +15% coconut milk residue samples infused with neera honey upto 16% feed moisture was found suitable for the preparation of nutritious extrudates based on functional characterization and minerals evaluation.

15.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36591874

RESUMO

There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.

16.
Int J Biol Macromol ; 229: 463-475, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36563821

RESUMO

Human awareness of the need for health and wellness practices that enhance disease resilience has increased as a result of recent health risks. Plant-derived polysaccharides with biological activity are good candidates to fight diseases because of their low toxicity. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides extract from different plant parts have been reported to possess significant biological activity such as anti-oxidant, anti-cancer, immunomodulatory, anti-diabetic, radioprotective and hepatoprotective. Several extraction and purification techniques have been used to isolate and characterize T. cordifolia polysaccharides. Along with hot-water extraction (HWE), other novel techniques like microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE) are used to extract T cordifolia polysaccharides. SFE is a revolutionary technology that gives the best yield and purity of low-molecular-weight polysaccharides. According to the findings, polysaccharides extracted and purified from T. cordifolia have a significant impact on their structure and biological activity. As a result, the methods of extraction, structural characterization, and biological activity of T. cordifolia polysaccharides are covered in this review. Research on T. cordifolia polysaccharides and their potential applications will benefit greatly from the findings presented in this review.


Assuntos
Tinospora , Humanos , Tinospora/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia
17.
J Sci Food Agric ; 103(1): 370-379, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36373792

RESUMO

BACKGROUND: Cocos nucifera (L.) is an important plantation crop with immense but untapped nutraceutical potential. Despite its bioactive potential, the biochemical features of testa oils of various coconut genotypes are poorly understood. Hence, in this study, the physicochemical characteristics of testa oils extracted from six coconut genotypes - namely West Coast Tall (WCT), Federated Malay States Tall (FMST), Chowghat Orange Dwarf (COD), Malayan Yellow Dwarf (MYD), and two Dwarf × Dwarf (D × D hybrids) viz., Cameroon Red Dwarf (CRD) × Ganga Bondam Green Dwarf (GBGD) and MYD × Chowghat Green Dwarf (CGD) - were analyzed. RESULTS: The proportion of testa in the nuts (fruits) (1.29-3.42%), the proportion of oil in the testa (40.97-50.56%), and biochemical components in testa oils - namely proxidant elements Fe (34.17-62.48 ppm) and Cu (1.63-2.77 ppm), and the total phenolic content (6.84-8.67 mg GAE/100 g), and phytosterol content (54.66-137.73 mg CE/100 g) varied depending on the coconut genotypes. The saturated fatty acid content of testa oils (67.75 to 78.78%) was lower in comparison with that of coconut kernel oils. Similarly, the lauric acid (26.66-32.04%), myristic (18.31-19.60%), and palmitic acid (13.43-15.71%,) content of testa oils varied significantly in comparison with the coconut kernel oils (32-51%, 17-21% and 6.9-14%, respectively). Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of 18 phenolic acids in coconut testa oil. Multivariate analysis revealed the biochemical attributes that defined the principal components loadings. Hierarchical clustering analysis of the genotypes showed two distinct clusters. CONCLUSION: This study reveals the genotypic variations in the nutritionally important biochemical components of coconut testa oils. The relatively high concentration of polyunsaturated fatty acids (PUFA) and polyphenol content in testa oils warrant further investigation to explore their nutraceutical potential. © 2022 Society of Chemical Industry.


Assuntos
Cocos , Ácidos Graxos , Cocos/genética , Cocos/química , Ácidos Graxos/análise , Óleo de Coco/química , Ácidos Graxos Insaturados , Genótipo , Óleos de Plantas/química
18.
Foods ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429245

RESUMO

In recent years, there has been increasing interest in green extraction methods and green solvents due to their many advantages. In this study, the effects of an ultrasonic extraction method and deep eutectic solvents (DESs) on the extraction of different bioactive substances from bee pollen were investigated. In this regard, the effects of process variables such as the molar ratio of the DES (1, 1.5, and 2), sonication time (15, 30, and 45 min), and ultrasonic power (90, 135 and 180 W) on total individual amino acids, total individual organic acids, and total individual phenolic compounds were investigated by response surface methodology (RSM). The optimal conditions were found to be a molar ratio of 2, sonication time of 45 min, and ultrasonic power of 180 W (R2 = 0.84). Extracts obtained via the maceration method using ethanol as a solvent were evaluated as the control group. Compared with the control group, the total individual amino acid and total individual organic acid values were higher using DESs. In addition, compounds such as myricetin, kaempferol, and quercetin were extracted at higher concentrations using DESs compared to controls. The results obtained in antimicrobial activity tests showed that the DES groups had broad-spectrum antibacterial effects against all bacterial samples, without exception. However, in yeast-like fungus samples, this inhibition effect was negligibly low. This study is the first to evaluate the impact of DESs on the extraction of bioactive substances from bee pollen. The obtained results show that this innovative and green extraction technique/solvent (ultrasonic extraction/DES) can be used successfully to obtain important bioactive compounds from bee pollen.

19.
J Food Sci ; 87(10): 4289-4311, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36101019

RESUMO

Functional food development is rapidly increasing as a result of consumer consciousness concerning healthy and nutritious foods. In turn, research exploring novel ingredients for formulating functional foods has been accelerated. Onion peel or skin is a byproduct obtained from onion processing that contains abundant phytochemicals, contributing to its antioxidant potential. The main focus of this review is to highlight different extraction techniques (both conventional and nonconventional) that can be implemented to extract the bioactive compounds from onion peel and assess their antioxidant activity. Furthermore, this review highlights the major areas for the application of onion peel and its extract as prospective functional ingredients, thus aiding in the preparation of designer foods with additional health benefits. The use of onion peel could also assist in redesigning popularly consumed processed foods, such as baked products, noodles or pasta, as packaging material, meat quality improvers, colorants, and juice clarifiers. This review serves as a preliminary document that can assist in exploring different ways of incorporating bioactive onion peels or skin into the functional food industry and concludes that future research can assist in the effective and efficient utilization of this resource.


Assuntos
Ingredientes de Alimentos , Cebolas , Cebolas/química , Antioxidantes , Alimento Funcional , Estudos Prospectivos , Extratos Vegetais/química
20.
Int J Biol Macromol ; 219: 1047-1061, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35914557

RESUMO

Allium cepa (onion) and Allium sativum (garlic) are important members of the Amaryllidaceae (Alliaceae) family and are being used both as food and medicine for centuries in different parts of the world. Polysaccharides have been extracted from different parts of onion and garlic such as bulb, straw and cell wall. The current literature portrays several studies on the extraction of polysaccharides from onion and garlic, their modification and determination of their structural (molecular weight, monosaccharide unit and their arrangement, type and position of glycosidic bond or linkage, degree of polymerization, chain conformation) and functional properties (emulsifying property, moisture retention, hygroscopicity, thermal stability, foaming ability, fat-binding capacity). In this line, this review, summarizes the various extraction techniques used for polysaccharides from onion and garlic, involving methods like solvent extraction method. Furthermore, the antioxidant, anticancer, immunomodulatory, antimicrobial, anti-inflammatory, and antidiabetic properties of onion and garlic polysaccharides as reported in in vivo and in vitro studies are also critically assessed in this review. Different studies have proved onion and garlic polysaccharides as potential antioxidant and immunomodulatory agent. Studies have implemented to improve the functionality of onion and garlic polysaccharides through various modification approaches. Further studies are warranted for utilizing onion and garlic polysaccharides in the food, nutraceutical, pharmaceutical and cosmetic industries.


Assuntos
Anti-Infecciosos , Alho , Antioxidantes/farmacologia , Alho/química , Hipoglicemiantes , Monossacarídeos , Cebolas/química , Preparações Farmacêuticas , Polissacarídeos/química , Polissacarídeos/farmacologia , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...