Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
BMC Cancer ; 22(1): 307, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317758

RESUMO

BACKGROUND: The tumorigenesis of infused umbilical cord mesenchymal stem cells (UC-MSCs) is being preclinically evaluated. METHODS: We observed tumor formation in NOD SCID mice after a single subcutaneous injection of hUC-MSCs and the effect of these cells on tumor growth in tumor-bearing mice. Three generations (P5, P7, and P10) of hUC-MSCs (1 × 107) from two donors (hUC-MSC1 and hUC-MSC2) were inoculated subcutaneously into NOD SCID mice. Subcutaneous transplantation models were established in NOD SCID mice with human cervical cancer HeLa cells (solid tumor) and human B cell lymphoma Raji cells (hematological tumor). Then, the animals were euthanized, gross dissection was performed, and tissues were collected. Various organs were observed microscopically to identify pathological changes and tumor metastasis. RESULTS: In the tumorigenesis experiment, no general anatomical abnormalities were observed. In the tumor promotion experiment, some animals in the HeLa groups experienced tumor rupture, and one animal died in each of the low- and medium-dose hUC-MSC groups. The results may have occurred due to the longer feeding time, and the tumor may have caused spontaneous infection and death. Pathological examination revealed no metastasis to distant organs in any group. In the Raji tumor model, some animals in each group experienced tumor rupture, and one animal in the medium-dose hUC-MSC group died, perhaps due to increased tumor malignancy. Thus, hUC-MSCs neither promoted nor inhibited tumor growth. No cancer cell metastasis was observed in the heart, liver, spleen, lungs, kidneys or other important organs, except that pulmonary venule metastasis was observed in 1 animal in the model group. CONCLUSIONS: Injected hUC-MSCs were not tumorigenic and did not significantly promote or inhibit solid or hematological tumor growth or metastasis in NOD SCID mice.


Assuntos
Carcinogênese/patologia , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical/citologia , Animais , Feminino , Células HeLa , Humanos , Linfoma de Células B/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais , Metástase Neoplásica , Células Tumorais Cultivadas
3.
J Ovarian Res ; 14(1): 133, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645513

RESUMO

BACKGROUND: The ovaries are the core reproductive organs in women and are critical for maintaining normal reproductive function and endocrine system stability. An ageing C57 mouse model was used to evaluate the efficacy and mechanism of mouse umbilical cord mesenchymal stem cells (mUCMSCs) and to explore the mechanism by which mUCMSCs promote the antioxidant repair of mouse granulosa cells (mGCs). RESULTS: Eighteen-month-old C57 mice were randomly divided into a model group and a treatment group. At the same time, 2-month-old C57 mice were established as a young group (15 mice per group). The mice in the treatment group were injected via the tail vein with GFP-labelled mUCMSCs. The ovarian volume in ageing C57 mice was decreased, and there were no follicles at any stage. After mUCMSC transplantation, the mouse ovaries increased in size, follicles at various stages were observed in the cortex, and the antral follicle counts increased. The serum E2, AMH, and INH-B levels of mice in the treatment group were significantly higher than those of mice in the model control group (P < 0.05). mUCMSCs downregulated the expression of the autophagy-related gene LC3b and the apoptosis-related genes Bax and Caspase-3, upregulated the expression of SOD2 and the peroxidase gene PRDX IV, and reduced apoptosis rates and reactive oxygen species (ROS) levels in granulosa cells. CONCLUSIONS: mUCMSCs play roles in promoting the repair of ageing ovaries by regulating immunity, anti-inflammatory responses and the PI3K-Akt signalling pathway.


Assuntos
Ovário/anatomia & histologia , Animais , Feminino , Camundongos , Modelos Animais
4.
Cells Tissues Organs ; 210(2): 118-134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182545

RESUMO

Based on the characteristics of modern weapon injury, a repetitive model of traumatic systemic inflammatory response syndrome (SIRS) and an evaluation system were established. The models were treated with GFP-labeled tree shrew umbilical cord mesenchymal stem cells (UCMSCs). Forty out of 50 tree shrews were used to make a unilateral femoral comminuted fracture. Lipopolysaccharide was injected intravenously to create a traumatic SIRS model. The other 10 shrews were used as normal controls. After the model was established for 10 days, 20 tree shrews were injected intravenously with GFP-labeled UCMSCs, and 18 tree shrews were not injected as the model control group. The distribution of GFP-labeled cells in vivo was measured at 2 and 10 days after injection. Twenty days after treatment, the model group, the normal control group, and the treatment group were taken to observe the pathological changes in each tissue, and blood samples were taken for the changes in liver, renal, and heart function. Distribution of GFP-positive cells was observed in all tissues at 2 and 10 days after injection. After treatment, the HE staining results of the treatment group were close to those of the normal group, and the model group had a certain degree of lesions. The results of liver, renal, and heart function tests in the treatment group were returned to normal, and the results in the model group were abnormally increased. UCMSCs have a certain effect on the treatment of traumatic SIRS and provide a new technical solution for modern weapon trauma treatment.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Rim , Síndrome de Resposta Inflamatória Sistêmica/terapia , Cordão Umbilical
5.
PLoS One ; 15(12): e0244160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370374

RESUMO

Ischemia-reperfusion injury is an important contributor to acute kidney injury and a major factor affecting early functional recovery after kidney transplantation. We conducted this experiment to investigate the protective effect of induced multipotent stem cell transplantation on renal ischemia-reperfusion injury. Forty rabbits were divided into four groups of 10 rabbits each. Thirty rabbits were used to establish the renal ischemia-reperfusion injury model, and ten rabbits served as the model group and were not treated. Among the 30 rabbits with renal ischemia-reperfusion injury, 10 rabbits were treated with induced peripheral blood mononuclear cells (PBMCs), and 10 other rabbits were treated with noninduced PBMCs. After three weekly treatments, the serum creatinine levels, urea nitrogen levels and urine protein concentrations were quantified. The kidneys were stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS) and Masson's trichrome and then sent for commercial metabolomic testing. The kidneys of the rabbits in the model group showed different degrees of pathological changes, and the recovery of renal function was observed in the group treated with induced cells. The results indicate that PBMCs differentiate into multipotent stem cells after induction and exert a therapeutic effect on renal ischemia-reperfusion injury.


Assuntos
Clara de Ovo/química , Rim/irrigação sanguínea , Leucócitos Mononucleares/transplante , Traumatismo por Reperfusão/terapia , Animais , Diferenciação Celular , Extratos Celulares/farmacologia , Células Cultivadas , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Coelhos
6.
Sci Rep ; 10(1): 19295, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168885

RESUMO

A model of allergic rhinitis (AR) in BALB/c mice was established and evaluated to provide experimental subjects for further research. Preparation of human umbilical cord mesenchymal stem cells (hUCMSCs), including isolation, expansion culture, passaging, cryopreservation, and preparation of cell suspensions, provided materials for experimental research and clinical treatment. The mouse AR model was established by ovalbumin (OVA) intraperitoneal injection and the nasal stimulation induction method, and the model had a good effect and high repeatability. GFP-labeled hUCMSCs had good effects and were stable cells that could be used for tracking in animals. Transplantation of hUCMSCs by intraperitoneal and tail vein injections had a specific effect on the AR model of mice, and tail vein injection had a better effect. Tracking of hUCMSCs in vivo showed that the three groups of mice had the greatest number of hUCMSCs in the nose at week 2. The mouse AR model was used to evaluate the efficacy of hUCMSC transplantation via multiple methods for AR. The distribution of hUCMSCs in vivo was tracked by detecting green fluorescent protein (GFP), and the treatment mechanism of hUCMSCs was elucidated. This study provides technical methods and a theoretical basis for the clinical application of hUCMSCs.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Rinite Alérgica/terapia , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Rinite Alérgica/metabolismo , Cordão Umbilical/citologia
7.
Aging (Albany NY) ; 12(17): 16899-16920, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924972

RESUMO

BACKGROUND: To study the effect of allogeneic umbilical cord mesenchymal stem cell transplantation on the structure and function of the thymus in aged C57 mice and provide a new method for the treatment of senile thymic atrophy. RESULTS: The changes in the thymus cortex and medulla volume and the lymphocyte ratio were analyzed by immunofluorescence. For thymus tissue sections, immunohistochemical staining was performed to detect p16, p53, SOD, becline1, LC3b, p62, sirt1, and sirt3. Changes in CK5, CK8, CD4 and CD8 expression were observed. Treatment with mUCMSCs could promote hair regeneration in aging mice and regenerate the thymus structure. CONCLUSIONS: mUCMSCs inhibited senescence of the thymus and promoted structural and functional thymus regeneration by downregulating the senescence genes p53 and p16 and upregulating the SOD, Sirt1 and Sirt3 genes, but the mechanism requires further research. METHODS: C57 mice were obtained and met the requirements of thymic aging. mUCMSCs were infused via the tail vein at a dose of 1×107 cells/kg twice per week for 3 weeks. Six weeks after the last transplantation, the thymus was weighed, and the thymus-to-body weight ratio was calculated. The thymus tissue was stained with HE.

8.
Sci Rep ; 9(1): 17646, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776475

RESUMO

Inflammatory bowel disease (IBD) is a persistent and chronic disease that is characterized by destructive gastrointestinal (GI) inflammation. Researchers are trying to identify and develop new and more effective treatments with no side effects. Acute and chronic mouse models of IBD were established using dextran sulfate sodium (DSS) solution. To evaluate the efficacy and mechanism, umbilical cord mesenchymal stem cells (UCMSCs) were obtained from Kunming (KM) mice and humans. In the chronic IBD study, the survival rates of the normal control, model, mouse UCMSC (mUCMSC) and human UCMSC (hUCMSC) groups were 100%, 40%, 86.7%, and 100%, respectively. The histopathological scores of the normal control, intraperitoneal injection, intravenous treatment, and model groups were 0.5 ± 0.30, 5.9 ± 1.10, 8.7 ± 1.39, and 8.8 ± 1.33 (p = 0.021). UCMSCs promoted the expression of the intestinal tight junction protein occludin, downregulated the protein expression of the autophagy marker LC3A/B in colon tissue, and upregulated the expression of VEGF-A and VEGFR-1 at the injured site. This study provides an experimental model for elucidating the therapeutic effects of UCMSCs in IBD. We provide a theoretical basis and method for the clinical treatment of IBD using UCMSCs.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Células-Tronco Mesenquimais , Cordão Umbilical/citologia , Animais , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos , Ocludina/metabolismo , Junções Íntimas/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Aging (Albany NY) ; 11(2): 590-614, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30673631

RESUMO

The relationship between bone marrow mesenchymal stem cells (BMSCs) and aging, as well as the antiaging effects of BMSCs, was observed. An aging macaque BMSC model was established. We isolated BMSCs from young and aged macaques and used RT-PCR and Western blot to confirm the aging-related mRNAs and their expression, revealing that TERT, SIRT1 and SIRT6 expression was decreased in the aged BMSCs. The morphology, immunophenotype, differentiation potential, proliferation potential, and antiaging effects of aged and young BMSCs on 293T cells were compared. The expression of aging-related genes and the difference between the secreted cytokines in natural aging and induced aging BMSCs were observed. The transcriptome of peripheral blood mononuclear cells from macaques was analyzed by high-throughput sequencing. Finally, the transcriptional characteristics and regulatory mechanisms of gene transcription in aging macaques were investigated.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Macaca , Células-Tronco Mesenquimais/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Transcriptoma
10.
Cytotechnology ; 70(5): 1447-1468, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066056

RESUMO

Umbilical cord mesenchymal stem cells (UC-MSCs) exert strong immunomodulatory effects and can repair organs. However, their roles in radiation injury remain unclear. We show that in tree shrews with acute radiation injury, injected UC-MSCs significantly improved survival rates, reduced lung inflammation and apoptosis, prevented pulmonary fibrotic processes, recovered hematopoiesis, and increased blood counts. A protein microarray analysis showed that serum levels of the anti-inflammatory cytokines IL-10 and IL-13 and the growth factors BMP-5, BMP-7, HGF, insulin, NT-4, VEGFR3, and SCF were significantly higher, while those of the inflammatory cytokines IL-2, TIMP-2, TNF-α, IFN-γ, IL-1ra, and IL-8 and the fibrosis-related factors PDGF-BB, PDGF-AA, TGF-ß1, IGFBP-2, and IGFBP-4 were significantly lower in UC-MSC-injected animals. A transcriptome analysis of PBMCs showed that the mRNA expression of C1q was upregulated, while that of HLA-DP was downregulated after UC-MSC injection. These results confirm the immunohistochemistry results. eGFP-labeled UC-MSCs were traced in vivo and found in the heart, liver, spleen, lungs, kidneys, thymus, small intestine and bone marrow. Our findings suggest that UC-MSC transplantation may be a novel therapeutic approach for treating acute radiation injury.

11.
Cell Physiol Biochem ; 43(3): 891-904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957810

RESUMO

BACKGROUND/AIMS: Stem cell-based therapy is attractive in many clinical studies, but current data on the safety of stem cell applications remains inadequate. This study observed the safety, immunological effect of cynomolgus monkey umbilical cord mesenchymal stem cells (mUC-MSCs) injected into cynomolgus monkeys, in order to evaluate the safety of human umbilical cord mesenchymal stem cells (hUC-MSCs) prepared for human clinical application. METHODS: Eighteen cynomolgus monkeys were divided into three groups. Group 1 is control group, Group 2 is low-dose group, Group 3 is high-dose group. After repeated administrations of mUC-MSCs, cynomolgus monkeys were observed for possible toxic reactions. RESULTS: During the experiment, no animal died. There were no toxicological abnormalities in body weight, body temperature, electrocardiogram, coagulation and pathology. In the groups 2 and 3, AST and CK transiently increased, and serum inorganic P slightly decreased. All animals were able to recover at 28 days after the infusion was stopped. In the groups 2 and 3, CD3+ and IL-6 levels significantly increased, and recovery was after 28 days of infusion. There were no obvious pathological changes associated with the infusion of cells in the general and microscopic examinations. CONCLUSIONS: The safe dosage of repeated intravenous infusion of mUC-MSCs in cynomolgus monkeys is 1.0 × 107/kg, which is 10 times of that in clinical human use.


Assuntos
Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Adipogenia , Animais , Aspartato Aminotransferases/metabolismo , Contagem de Células Sanguíneas , Peso Corporal , Complexo CD3/metabolismo , Diferenciação Celular , Células Cultivadas , Creatina Quinase/metabolismo , Feminino , Infusões Intravenosas , Interleucina-6/metabolismo , Macaca fascicularis , Masculino , Células-Tronco Mesenquimais/metabolismo , Fósforo/sangue , Linfócitos T/citologia , Linfócitos T/metabolismo , Testes de Toxicidade Crônica , Transplante Homólogo
12.
Mol Cell Probes ; 34: 1-12, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28400333

RESUMO

Islet transplantation is arguably one of the most promising strategies to treat patients suffering with diabetes mellitus. However, a combination of a lack of donors and chronic immune rejection limit clinical applications. Here, we evaluated the efficacy of cell therapy using islet-like cells differentiated from umbilical cord mesenchymal stem cells (UC-MSCs) of tree shrews for the treatment of type 2 diabetes. Enhanced green fluorescent protein (eGFP) labeled UC-MSCs were directly injected into type 2 diabetic tree shrews, where UC-MSC differentiated into functional islet-like cells and alleviated disease severity, as evidenced by improved biochemical features and reduced concentrations of inflammatory cytokines. We also demonstrated that in vitro culture of UC-MSCs for six days in a high-glucose environment (40 mmol/L or 60 mmol/L glucose) resulted in significant gene methylation. The potency of UC-MSCs differentiated into insulin-secreting cells was attributed to the activation of Notch signal pathways. This study provides evidence that cell therapy of islet-like cells differentiated from UC-MSCs is a feasible, simple and inexpensive approach in the treatment of type 2 diabetes.


Assuntos
Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Insulina/fisiologia , Células-Tronco Mesenquimais/fisiologia , Tupaiidae/fisiologia , Cordão Umbilical/fisiologia , Animais , Células Cultivadas , Transdução de Sinais/fisiologia
13.
PLoS One ; 12(4): e0176273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445516

RESUMO

Discovering a new cell transplantation approach for treating chronic renal insufficiency is a goal of many nephrologists. In vitro-cultured peripheral blood mononuclear cells (PBMCs) were reprogrammed into induced mesenchymal stem cells (iMSCs) by using natural inducing agents made in our laboratory. The stem cell phenotype of the iMSCs was then identified. Unilateral ureteral obstruction (UUO) was used to create an animal model of chronic renal insufficiency characterized by renal interstitial fibrosis. The induced and non-induced PBMCs were transplanted, and the efficacy of iMSCs in treating chronic renal insufficiency was evaluated using a variety of methods. The ultimate goal was to explore the effects of iMSC transplantation on the treatment of chronic renal insufficiency, with the aim of providing a new therapeutic modality for this disease.


Assuntos
Transplante de Células-Tronco Mesenquimais , Insuficiência Renal Crônica/terapia , Animais , Nitrogênio da Ureia Sanguínea , Células Cultivadas , Creatinina/sangue , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Rim/patologia , Leucócitos Mononucleares/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Coelhos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Transplante Autólogo , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
14.
Stem Cell Res Ther ; 7(1): 121, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558022

RESUMO

BACKGROUND: The establishment of a tree shrew model for systemic lupus erythematosus (SLE) provides a new method to evaluate the pathogenesis of autoimmune diseases. METHODS: Eighty tree shrews were randomly divided into four groups receiving either an intraperitoneal injection of pristane, lipopolysaccharide (LPS), or pristane and LPS, or no injection. Three weeks after injection, the SLE model tree shrews were divided into the model group and the treatment group. Tree shrews in the treatment group and the normal control group were infused with umbilical cord mesenchymal stem cells (UC-MSCs). The cells were labeled with DiR. Two weeks after transplantation, three groups of tree shrews were analyzed for urine protein, serum antinuclear antibodies and antiphospholipid, and inflammatory cytokine antibody microarray detection. The heart, liver, spleen, lung, and kidney were collected from the three groups and subjected to hematoxylin and eosin (HE) staining and detection of renal immune complex deposition. RESULTS: HE staining indicated pathology in the model group. Red fluorescence revealed immune complex deposition in the kidneys from the model group. CONCLUSIONS: The combined intraperitoneal injection of pristane and LPS is the best way to induce SLE pathological changes. The pathological changes improved after UC-MSC treatment.


Assuntos
Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/terapia , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Terpenos/farmacologia , Tupaiidae , Cordão Umbilical/efeitos dos fármacos , Cordão Umbilical/patologia
15.
Cytotechnology ; 68(6): 2449-2467, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27000263

RESUMO

The aim of this study was to establish a tree shrew metabolic syndrome model and demonstrate the utility of MSCs in treating metabolic syndrome. We used tree shrew umbilical cord mesenchymal stem cell (TS-UC-MSC) transplantation for the treatment of metabolic syndrome to demonstrate the clinical application of these stem cells and to provide a theoretical basis and reference methods for this treatment. Tree shrew metabolic syndrome model showed significant insulin resistance, high blood sugar, lipid metabolism disorders, and hypertension, consistent with the diagnostic criteria. TS-UC-MSC transplantation at 16 weeks significantly reduced blood sugar and lipid levels, improved insulin resistance and the regulation of insulin secretion, and reduced the expression levels of the pro-inflammatory cytokines IL-1 and IL-6 (P < 0.05). The transplanted TS-UC-MSCs targeted the liver, kidney and pancreas; reduced liver cell degeneration, necrosis, and inflammatory exudation; mitigated bleeding congestion and inflammatory cell infiltration in the kidney; and reduced islet cell degeneration and necrosis. We successfully developed a tree shrew metabolic syndrome model and showed that MSC migrate in diseased organs and can attenuate metabolic syndrome severity in a tree shrew model.

16.
Cytotechnology ; 68(4): 1115-22, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26541834

RESUMO

We previously found that chicken egg white extract could promote cell survival and proliferation. In the present study, we further separated this extract into its components to identify those primarily responsible for promoting cell proliferation. Components of differing molecular weight were separated from chicken egg white extract by ultrafiltration and 293T cell cultures were supplemented with various concentrations. The effects on cell proliferation were subsequently determined by a CellTiter 96 Aqueous One Solution Cell Proliferation Assay kit (Promega). We demonstrate that components from chicken egg white smaller than 3 kDa in size are able to function as active ingredients promoting cellular proliferation. This discovery may identify a new and convenient additive for cell culture media to promote cell growth and proliferation.

17.
Cytotherapy ; 16(12): 1739-49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25442501

RESUMO

BACKGROUND AIMS: Embryonic-like stem cells (ELSCs) express embryonic stem cell-specific marker genes, such as SSEA-4, Oct-4 and Nanog, and can be induced to differentiate into cells of all 3 germ layers. Our preliminary data showed that ELSCs isolated from human bone marrow express multipotent antigen markers and differentiate into multinucleated myotube-like cells more efficiently than do mesenchymal stromal cells (MSCs) isolated from the same source. We investigated the therapeutic effect of ELSCs in dystrophin/utrophin double knock-out (dko) mice, one of the Duchenne muscular dystrophy animal models, by systemically transplanting them through tail-vein injection. METHODS: ELSCs and MSCs were both isolated from human bone marrow. Two months after equal amounts of ELSCs or MSCs were injected through tail-vein injection, we evaluated skeletal muscle motor function and serum creatine kinase activity and measured dystrophin expression by means of immunostaining, Western blotting and semi-quantitative reverse transcriptase-polymerase chain reaction. RESULTS: ELSCs positive for Oct-4 and Nanog-3 expressed higher levels of SSEA-4, FZD-9 and CD105 and were induced to differentiate into myotube-like cells more efficiently than did MSCs in vitro. Transplantation of ELSCs through the tail vein improved motor function and decreased serum creatine kinase activity at 2 months after cell transplantation. In addition, dystrophin protein and messenger RNA were upregulated and the skeletal muscle histology was improved in these dko mice transplanted with ELSCs. CONCLUSIONS: ELSCs could be more efficiently induced to differentiate into myotubes than were MSCs in vitro, and systematically transplanting ELSCs improved muscle motor function and muscle histology in dko mice.


Assuntos
Células da Medula Óssea/metabolismo , Distrofina/deficiência , Células-Tronco Embrionárias/metabolismo , Distrofia Muscular de Duchenne/terapia , Transplante de Células-Tronco , Utrofina/deficiência , Animais , Antígenos de Diferenciação/biossíntese , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Células-Tronco Embrionárias/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
18.
Cell Biochem Funct ; 32(5): 453-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24867093

RESUMO

Diabetic nephropathy (DN) is a common microvascular complication of diabetes. We used a new DN model in tree shrews to validate the use of bone-marrow mesenchymal stem cell (BM-MSC) transplantation to treat DN. The DN tree shrew model was established by a high-sugar and high-fat diet and four injections of streptozotocin. 4',6-Diamidino-2-phenylindole labelled BM-MSCs were injected into tree shrews. The DN tree shrew model was successfully established. Blood glucose was significantly increased ( p < 0.01) during the entire experiment. DN tree shrews showed dyslipidemia, insulin resistance and increased 24-h proteinuria. At 21 days after BM-MSC transplantation, glucose and levels of triglycerides, total cholesterol and 24-h urine volume were lower than in tree shrews with DN alone ( p < 0.01) but were still higher than control values ( p < 0.01). Levels of creatinine and urea nitrogen as well as 24-h proteinuria were lower for DN tree shrews with BM-MSCs transplantation than DN alone ( p < 0.05). High-sugar and high-fat diet combined with STZ injection can induce a tree shrew model of DN. BM-MSCs injection can home to damaged kidneys and pancreas, for reduced 24-h proteinuria and improved insulin resistance.


Assuntos
Células da Medula Óssea/citologia , Nefropatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Colesterol/sangue , Creatinina/sangue , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Produtos Finais de Glicação Avançada/sangue , Insulina/sangue , Rim/patologia , Masculino , Pâncreas/patologia , Estreptozocina/toxicidade , Triglicerídeos/sangue , Tupaiidae
19.
J Immunol Res ; 2014: 530501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25759830

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. METHODS: We used human umbilical cord mesenchymal stem cell (H-UC-MSC) transplantation to treat B6.Fas mice. RESULTS: After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4(+)CD25(+)Foxp3(+) T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. CONCLUSIONS: The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.


Assuntos
Lúpus Eritematoso Sistêmico/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Linfócitos T Reguladores/imunologia , Cordão Umbilical/citologia , Animais , Anticorpos Antinucleares/sangue , Antígenos CD4/metabolismo , DNA/imunologia , Fatores de Transcrição Forkhead/metabolismo , Histonas/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transplante Heterólogo
20.
PLoS One ; 8(12): e83507, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367598

RESUMO

INTRODUCTION: Renal interstitial fibrosis (RIF) is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. METHODS: A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP). These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. RESULTS: Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05) were observed in serum creatinine (SCr) (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L) and blood urea nitrogen (BUN) (119 ± 22 µmol/L to 97 ± 13 µmol/L), indicating improvement in renal function. CONCLUSIONS: We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Nefrite Intersticial/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Fibroblastos/citologia , Fibrose , Rim/diagnóstico por imagem , Rim/metabolismo , Rim/patologia , Nefrite Intersticial/diagnóstico por imagem , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Tamanho do Órgão , Coelhos , Tomografia Computadorizada de Emissão de Fóton Único , Fator de Crescimento Transformador beta1/metabolismo , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...