Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924668

RESUMO

BACKGROUND: Dicer1 plays a crucial role in regulating the development and reproduction of insects. Knockout of Dicer1 causes pupal deformity, low eclosion and low fecundity in Plutella xylostella, but the mechanism behind this phenomenon is not clear. This study aims to identify differentially-expressed genes and miRNAs in the Dicer1-knockout strain (ΔPxDcr-1) and assess their impact on the reproduction and development of P. xylostella. RESULTS: The knockout of Dicer1 affected the expression of genes including the adipokinetic hormone/corazonin-related peptide receptor (PxACPR). The expression of PxACPR was upregulated, and the expression of miR-8514-5p was downregulated in ΔPxDcr-1 of P. xylostella. The dual luciferase reporter assay and pull-down assay showed that miR-8514-5p bound to PxACPR in vitro and in vivo. The expression profiles demonstrated a negative correlation between PxACPR mRNA and miR-8514-5p in different developmental stages of the wild-type strain. Both the miR-8514-5p agomir and double-stranded RNA of ACPR (dsPxACPR) injected into the pre-pupae inhibited the mRNA level of PxACPR, causing high mortality and deformity of pupae, and low fecundity and hatching rate, which were consistent with the phenotype of ΔPxDcr-1. The injection of miR-8514-5p antagomir caused a similar phenotype to the injection of miR-8514-5p agomir. Additionally, the injection of miR-8514-5p antagomir significantly rescued the phenotype caused by dsPxACPR. CONCLUSION: These results indicate that miR-8514-5p affects the development and reproduction of P. xylostella by regulating PxACPR, and the homeostasis of PxACPR expression is essential for the development and reproduction of P. xylostella. © 2024 Society of Chemical Industry.

2.
Pest Manag Sci ; 80(7): 3194-3206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348909

RESUMO

BACKGROUND: Oogenesis is a complex pathway necessary for proper female reproduction in insects. Ovary-serine protease (Osp) is a homologous gene of serine protease Nudel (SpNudel) and plays an essential role in the oogenesis and ovary development of Drosophila melanogaster. However, the function of Osp is not determined in Plutella xylostella, a highly destructive pest of cruciferous crops. RESULTS: The PxOsp gene comprises a 5883-bp open-reading frame that encodes a protein consisting of 1994 amino acids, which contain four conserved domains. PxOsp exhibited a high relative expression in adult females with a specific expression in the ovary. Through the utilization of CRISPR/Cas9 technology, homozygous mutants of PxOsp were generated. These homozygous mutant females produced fewer eggs (average of 56 eggs/female) than wild-type (WT) females (average of 97 eggs/female) when crossed with WT males, and these eggs failed to hatch. Conversely, mutant males produced normal progeny when crossed with WT females. The ovarioles in homozygous mutant females were significantly shorter (5.02 mm in length) and contained fewer eggs (average of 3 eggs/ovariole) than WT ovarioles (8.09 mm in length with an average of 8 eggs/ovariole). Moreover, eggs laid by homozygous mutant females were fragile, with irregular shapes, and were unable to maintain structural integrity due to eggshell ruptures. However, no significant differences were observed between WT and mutant individuals regarding developmental duration, pupal weight, and mating behavior. CONCLUSION: Our study suggesteds that PxOsp plays a vital role in female reproduction, particularly in ovary and egg development. Disrupting PxOsp results in recessive female sterility while leaving the male reproductive capability unaffected. This report represents the first study of a haplosufficient gene responsible for female fertility in lepidopteran insects. Additionally, these findings emphasize PxOsp as a potential target for genetically-based pest management of P. xylostella. © 2024 Society of Chemical Industry.


Assuntos
Sistemas CRISPR-Cas , Fertilidade , Mariposas , Ovário , Serina Proteases , Animais , Feminino , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Fertilidade/genética , Serina Proteases/genética , Serina Proteases/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino
3.
Pest Manag Sci ; 80(4): 2109-2119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133081

RESUMO

BACKGROUND: Dicer is an endonuclease that belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In most insects, there are two Dicer genes, Dicer-1 (Dcr-1) and Dicer-2 (Dcr-2), which are involved in the micro-RNA and small-interfering RNA pathways in many species, respectively. The function of Dicer in Plutella xylostella remains unknown. RESULTS: The full-length open reading frames of P. xylostella Dicer-1 (PxDcr-1) and Dicer-2 (PxDcr-2) were cloned and sequenced. Dcr-1 and Dcr-2 proteins shared similar structural domains with the Dicer-Partner Binding Domain (Dicer-PBD) and the double-strand RNA binding domain (dsRBD) present only in Dcr-1. The phylogenetic trees showed that lepidopteran Dcr-1s or Dcr-2s clustered in one branch, with PxDcr-1 in the basal position and PxDcr-2 closest to Plodia interpunctella Dicer. Two homozygous knockout lines, ΔPxDcr-1 and ΔPxDcr-2, were obtained by using the CRISPR-Cas9 technique. The ΔPxDcr-1 strain exhibited a high mortality rate, a low eclosion rate, a low egg-laying rate, a low hatching rate, and a shriveled ovariole without mature eggs. The ΔPxDcr-2 strain showed no significant difference from the wild-type in terms of survival, development and reproduction, but the RNA interference (RNAi) efficiency caused by dsRNA was significantly reduced. CONCLUSION: These findings demonstrate the involvement of PxDcr-1 in the development and reproduction of P. xylostella, specifically in the formation of ovarioles and eggs, and PxDcr-2 is indispensable for RNAi. These findings shed light on the function of Dcr-1 and Dcr-2 in Lepidoptera. © 2023 Society of Chemical Industry.


Assuntos
Lepidópteros , Animais , Filogenia , Lepidópteros/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Cadeia Dupla/genética , Interferência de RNA
4.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569697

RESUMO

Piwi proteins play a significant role in germ cell development and the silencing of transposons in animals by associating with small non-coding RNAs known as Piwi-interacting RNAs (piRNAs). While the Piwi gene has been well characterized in various insect species, the role of the Piwi (PxPiwi) gene in the diamondback moth (Plutella xylostella), a globally distributed pest of cruciferous crops, remains unclear. Expression analysis demonstrated the upregulation of PxPiwi in pupae and testes. Furthermore, we generated a PxPiwi-knockout mutant using CRISPR/Cas9 technology, which resulted in a significantly prolonged pupal stage and the failure of pupae to develop into adults. Additionally, the knockdown of PxPiwi, through RNA interference (RNAi), led to a substantial decrease in the oviposition and hatchability of P. xylostella. These findings indicate that PxPiwi is specifically expressed and essential for the development and reproduction of P. xylostella. This is the first report indicating the involvement of the Piwi gene in the development of lepidopteran insects, except for reproduction and germ cell development, which provides a foundation for future investigations into the functions of PxPiwi.


Assuntos
Mariposas , Animais , Feminino , Mariposas/fisiologia , Reprodução/genética , Oviposição , Larva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...