Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432276

RESUMO

The objective was to utilize spent coffee grounds (SCG) as charring agent to combine with ammonium polyphosphate (APP) to prepare flame retardant poly(lactic acid) (PLA) composites with improved toughness. PLA/APP-SCG and PLA/APP-SCG/KH560 composites were prepared, and silane coupling agent KH560 was applied to improve particle-matrix interfacial compatibility. The particle-matrix interface, char formation, flame retardancy, mechanical properties and fracture morphology of PLA composites were studied. Results showed that PLA/APP-SCG5% and PLA/APP-SCG20% passed UL-94 V-0 rating, and increase in charred residues was favorable for improving flame retardancy. Improved toughness was also obtained compared to PLA, attributed to debonding of APP from matrix under external force as well as plasticization effect of coffee oil contained in SCG. PLA/APP-SCG5%/KH560 and PLA/APP-SCG20%/KH560 showed smaller elongation at break and impact strength compared to PLA/APP-SCG5% and PLA/APP-SCG20%, respectively. The improved interfacial compatibility was unfavorable for debonding of APP from matrix, and both APP and SCG played the role of enhancing strength, thus decreasing toughness. PLA/APP-SCG/KH560 counterparts were actually set as parallel samples to prove that PLA/APP-SCG composites showed improved toughness with weak interfacial compatibility. This study has provided a practical approach to utilize bio-derived wastes as charring agent to prepare flame retardant PLA composites with enhanced toughness.


Assuntos
Café , Retardadores de Chama , Poliésteres , Polifosfatos
2.
Int J Biol Macromol ; 209(Pt B): 2050-2060, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490769

RESUMO

As an effective alternative for petrochemical-based polymers, bio-based poly (lactic acid) (PLA) foam has been anticipated to alleviate enormous environmental pollution caused by microplastics. However, some difficulties involved in PLA foaming process due to the inherently poor melt strength and crystallization properties. In this context, a small amount of polytetrafluoroethylene (PTFE) was incorporated into PLA matrix to solve the aforementioned issues. Scanning electron microscopy measurement exhibited that PTFE fibrils and their physical networks were formed in molten PLA after blending. Due to these PTFE networks, approximately 2 orders of magnitudes increment in the storage modulus and more than 20% improvement in crystallinity of PLA were obtained. Diverse PLA samples were successfully foamed by a cost-effective, green and supercritical CO2-assisted foaming method. The PLA/PTFE foam with the PTFE content of 5 wt% (PLA/PTFE5) possessed the smallest pore size (9.51 µm) and the highest pore density (2.60 × 108 pores/cm3). In addition, the average specific compressive strength of PLA/PTFE5 foam was enhanced 30% in comparison with that of pure PLA foam. Overall, this study could provide a prospective strategy for developing bioderived and biodegradable polymer foams with controllable pore structures and high compression property.


Assuntos
Plásticos , Politetrafluoretileno , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Estudos Prospectivos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...