Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 322: 114813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722509

RESUMO

Newcastle disease (ND) caused by virulent avian paramyxovirus type I (APMV-1) is a WOAH and EU listed disease affecting poultry worldwide. ND exhibits different clinical manifestations that may either be neurological, respiratory and/or gastrointestinal, accompanied by high mortality. In contrast, mild or subclinical forms are generally caused by lentogenic APMV-1 and are not subject to notification. The rapid discrimination of virulent and avirulent viruses is paramount to limit the spread of virulent APMV-1. The appropriateness of molecular methods for APMV-1 pathotyping is often hampered by the high genetic variability of these viruses that affects sensitivity and inclusivity. This work presents a new array of real-time RT-PCR (RT-qPCR) assays that enable the identification of virulent and avirulent viruses in dual mode, i.e., through pathotype-specific probes and subsequent Sanger sequencing of the amplification product. Validation was performed according to the WOAH recommendations. Performance indicators on sensitivity, specificity, repeatability and reproducibility yielded favourable results. Reproducibility highlighted the need for assays optimization whenever major changes are made to the procedure. Overall, the new RT-qPCRs showed its ability to detect and pathotype all tested APMV-1 genotypes and its suitability for routine use in clinical samples.


Assuntos
Avulavirus , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Avulavirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reprodutibilidade dos Testes , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/diagnóstico , Galinhas
2.
Viruses ; 15(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36992389

RESUMO

Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably cause rabies, and therefore their impact on animal and public health should not be neglected. For accurate and reliable surveillance, diagnosis should rely on broad-spectrum tests able to detect all known lyssaviruses, including the most divergent ones. In the present study, we evaluated four different pan-lyssavirus protocols widely used at an international level, including two real-time RT-PCR assays (namely LN34 and JW12/N165-146), a hemi-nested RT-PCR and a one-step RT-PCR. Additionally, an improved version of the LN34 assay ((n) LN34) was developed to increase primer-template complementarity with respect to all lyssavirus species. All protocols were evaluated in silico, and their performance was compared in vitro employing 18 lyssavirus RNAs (encompassing 15 species). The (n) LN34 assay showed enhanced sensitivity in detecting most lyssavirus species, with limits of detection ranging from 10 to 100 RNA copies/µL depending on the strain, while retaining high sensitivity against Lyssavirus rabies. The development of this protocol represents a step forward towards improved surveillance of the entire Lyssavirus genus.


Assuntos
Quirópteros , Lyssavirus , Raiva , Infecções por Rhabdoviridae , Animais , Humanos , Lyssavirus/genética , Raiva/diagnóstico , Raiva/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Viral/genética , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Rhabdoviridae/diagnóstico , Infecções por Rhabdoviridae/veterinária
3.
J Virol Methods ; 314: 114686, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731632

RESUMO

Global surveillance for Avian Influenza Virus (AIV) in birds is essential for assessing public and animal health risks and real-time polymerase chain reaction (RT-qPCR) is among the official methods recommended by the World Organisation for Animal Health (WOAH) to confirm the presence of the virus in laboratory specimens. Yet, in low-resource setting laboratories, the detection of AIV can be hampered by the need to maintain a cold chain for wet reagents. In such cases, alternatives should be ready to maximize surveillance capacities and mining of AIV. Therefore, we compared two lyophilized RT-qPCR reagents (1st - 5 × CAPITAL™ 1-Step qRT-PCR Probe Reagent, lyophilized kit, and 2nd - Qscript lyo 1-step-kit) to the WOAH recommended protocol by Nagy et al., 2020 using QuantiTect Probe RT-PCR-kit as wet reagent. The comparative study panel comprised 102 RNA samples from two AIV subtypes, i.e. H5 and H9 subtypes. Despite that the wet reagent exhibited the lowest limit of detection (LOD) compared to the two lyophilized reagents, the inter-assay agreement was substantial between the 1st lyophilized reagent and the comparator with 95.1% of shared positive results. Cohen's-kappa was fair between the 2nd lyophilized reagent and the comparator with 75.5% of shared positive results. Agreement using the statistical test Bland-Altman was good for samples with Cq-values < 25 for all reagents, revealing discrepancies when the viral load is low. This trend was especially evident while using the 2nd lyophilized reagent. Similar trends were obtained using the same lyophilized reagents but following the protocol by Heine et al., 2015 with AgPath-ID™ One-Step RT-PCR as a comparator, showing that Cq-values increase using lyophilized reagents but correlate strongly with the wet reagent. Further, inter-assay agreement between reagents improved when the protocol from Heine et al., 2015 was applied, suggesting a higher resilience to chemistry changes allowing easier reagents interchangeability.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Influenza Aviária/diagnóstico , Vírus da Influenza A Subtipo H9N2/genética , Virus da Influenza A Subtipo H5N1/genética , Indicadores e Reagentes , Sensibilidade e Especificidade
4.
Viruses ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851642

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , Feminino , Masculino , Mesocricetus , SARS-CoV-2 , Comportamento Sexual , Caracteres Sexuais
5.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257883

RESUMO

The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain.

6.
Front Vet Sci ; 9: 916108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898545

RESUMO

H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection.

7.
Viruses ; 14(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746734

RESUMO

Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Vírus da Influenza A/genética , Aves Domésticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Pathogens ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456093

RESUMO

Due to the insufficient capacity of Croatian hatcheries, marine aquaculture depends on the importation of fry from different countries in the Mediterranean basin. Importation enables a risk of spreading pathogenic agents. Viral nervous necrosis (VNN), caused by betanodavirus is devastating for the farming of European sea bass. We described a VNN outbreak that occurred in Croatia in 2014. After the diagnosis of VNN in sea bass fry introduced from the same hatchery to five unconnected marine farms at the Adriatic Coast, we performed surveillance within one of the affected farms. It resulted in proven horizontal spreading of the virus within the farm and to feral fish around farm cages. Real-time RT-PCR tested samples showed the dependence of the virus' proliferation to the water temperature and the fish age. The highest mortality rates were noted during higher sea temperatures. Phylogenetic analysis of partial sequences of RNA1 and RNA2 supported the hypothesis that the virus was introduced to all studied farms from the same hatchery. Moreover, phylogenetic analysis of the whole genome sequences of infected farmed sea bass and thicklip mullet showed high similarity and it is unlikely that infection in Croatian sea bass farms has originated from wild reservoirs, as the first positive record in wild mullet was recorded after the disease outbreak.

9.
ACS ES T Water ; 2(11): 1953-1963, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552713

RESUMO

Wastewater-based epidemiology is now widely used as an indirect tool to monitor the spread of SARS-CoV-2. In this study, five different sample matrices representing diverse phases of the wastewater treatment process were collected during the second wave of SARS-CoV-2 from two wastewater treatment plants (WWTPs) serving the Civil Hospital and Sacca Fisola island in Venice, Italy. Positive SARS-CoV-2 detections occurred at both WWTPs, and data on viral genome detection rate and quantification suggest that the pellet (i.e., the particulate resulting from the influent) is a sensitive matrix that permits reliable assessment of infection prevalence while reducing time to results. On the contrary, analysis of post-treatment matrices provides evidence of the decontamination efficacy of both WWTPs. Finally, direct sequencing of wastewater samples enabled us to identify B.1.177 and B.1.160 as the prevalent SARS-CoV-2 lineages circulating in Venice at the time of sampling. This study confirmed the suitability of wastewater testing for studying SARS-CoV-2 circulation and established a simplified workflow for the prompt detection and characterization of the virus.

10.
Front Plant Sci ; 12: 786871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950172

RESUMO

Infectious bursal disease virus is the causative agent of Gumboro disease, a severe infection that affects young chickens and is associated with lymphoid depletion in the bursa of Fabricius. Traditional containment strategies are based either on inactivated or live-attenuated vaccines. These approaches have several limitations such as residual virulence or low efficacy in the presence of maternally derived antibodies (MDA) but, most importantly, the impossibility to detect the occurrence of natural infections in vaccinated flocks. Therefore, the development of novel vaccination strategies allowing the differentiation of infected from vaccinated animals (DIVA) is a priority. Recently, commercial vectored and experimental subunit vaccines based on VP2 have been proved effective in protecting from clinical disease and posed the basis for the development of novel DIVA strategies. In this study, an engineered version of the VP3 protein of IBDV (His-VP3) was produced in plants, successfully purified from Nicotiana benthamiana leaves, and used to develop an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-VP3 antibodies. The His-VP3 ELISA was validated with a panel of 180 reference sera and demonstrated to have 100% sensitivity (95% CI: 94.7-100.0) and 94.17% specificity (95% CI: 88.4-97.6). To evaluate the application of His-VP3 ELISA as a DIVA test, the novel assay was used to monitor, in combination with a commercial kit, detecting anti-VP2 antibodies, the immune response of chickens previously immunized with an inactivated IBDV vaccine, a recombinant Turkey herpes virus carrying the VP2 of IBDV (HVT-ND-IBD) or with plant-produced VP2 particles. The combined tests correctly identified the immune status of the vaccinated specific pathogen free white-leghorn chickens. Moreover, the His-VP3 ELISA correctly detected MDA against VP3 in commercial broiler chicks and showed that antibody titers fade with time, consistent with the natural decrease of maternally derived immunity. Finally, the novel assay, in combination with a VP2-specific ELISA, demonstrated its potential application as a DIVA test in chickens inoculated with VP2-based vaccines, being able to detect the seroconversion after challenge with a very virulent IBDV strain.

11.
Viruses ; 13(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835129

RESUMO

Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.


Assuntos
Vírus da Influenza A Subtipo H7N7/imunologia , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Influenza Aviária/imunologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia
12.
Nat Commun ; 12(1): 6610, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785679

RESUMO

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.


Assuntos
COVID-19/patologia , Mucosa Intestinal/virologia , Organoides/virologia , SARS-CoV-2/fisiologia , Estômago/virologia , Replicação Viral/fisiologia , Feto Abortado , Idoso , Animais , COVID-19/virologia , Linhagem Celular , Criança , Pré-Escolar , Chlorocebus aethiops , Humanos , Lactente , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Organoides/patologia , SARS-CoV-2/isolamento & purificação , Estômago/patologia
13.
Virus Evol ; 7(2): veab056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754510

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is the causative agent of IHN triggering a systemic syndrome in salmonid fish. Although IHNV has always been associated with low levels of mortality in Italian trout farming industries, in the last years trout farmers have experienced severe disease outbreaks. However, the observed increasing virulence of IHNV is still based on empirical evidence due to the poor and often confounding information from the field. Virulence characterization of a selection of sixteen Italian isolates was performed through in vivo challenge of juvenile rainbow trout to confirm field evidence. The virulence of each strain was firstly described in terms of cumulative mortality and survival probability estimated by Kaplan-Meier curves. Furthermore, parametric survival models were applied to analyze the mortality rate profiles. Hence, it was possible to characterize the strain-specific mortality peaks and to relate their topology to virulence and mortality. Indeed, a positive correlation between maximum mortality probability and virulence was observed for all the strains. Results also indicate that more virulent is the strain, the earliest and narrowest is the mortality peak. Additionally, intra-host viral quantification determined in dead animals showed a significant correlation between viral replication and virulence. Whole-genome phylogeny conducted to determine whether there was a relation between virulence phenotype and IHNV genetics evidenced no clear clustering according to phenotype. Moreover, a root-to-tip analysis based on genetic distances and sampling date of Italian IHNV isolates highlighted a relevant temporal signal indicating an evolving nature of the virus, over time, with the more virulent strains being the more recent ones. This study provides the first systematic characterization of Italian IHNV's virulence. Overall results confirm field data and point out an abrupt increase in IHNV virulence, with strains from 2015-2019 showing moderate to high virulence in rainbow trout. Further investigations are needed in order to extensively clarify the relation between evolution and virulence of IHNV and investigate the genetic determinants of virulence of this viral species in rainbow trout.

14.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696405

RESUMO

Coronaviruses (CoVs) are widespread and highly diversified in wildlife and domestic mammals and can emerge as zoonotic or epizootic pathogens and consequently host shift from these reservoirs, highlighting the importance of veterinary surveillance. All genera can be found in mammals, with α and ß showing the highest frequency and diversification. The aims of this study were to review the literature for features of CoV surveillance in animals, to test widely used molecular protocols, and to identify the most effective one in terms of spectrum and sensitivity. We combined a literature review with analyses in silico and in vitro using viral strains and archive field samples. We found that most protocols defined as pan-coronavirus are strongly biased towards α- and ß-CoVs and show medium-low sensitivity. The best results were observed using our new protocol, showing LoD 100 PFU/mL for SARS-CoV-2, 50 TCID50/mL for CaCoV, 0.39 TCID50/mL for BoCoV, and 9 ± 1 log2 ×10-5 HA for IBV. The protocol successfully confirmed the positivity for a broad range of CoVs in 30/30 field samples. Our study points out that pan-CoV surveillance in mammals could be strongly improved in sensitivity and spectrum and propose the application of a new RT-PCR assay, which is able to detect CoVs from all four genera, with an optimal sensitivity for α-, ß-, and γ-.


Assuntos
Alphacoronavirus/genética , Infecções por Coronavirus/veterinária , Deltacoronavirus/genética , Gammacoronavirus/genética , SARS-CoV-2/genética , Animais , Animais Selvagens/virologia , Betacoronavirus/genética , COVID-19/veterinária , Quirópteros/virologia , Genoma Viral/genética , Humanos , Gado/virologia , Roedores/virologia
15.
Animals (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271890

RESUMO

The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivo.

16.
Front Microbiol ; 11: 574231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193184

RESUMO

Viral hemorrhagic septicemia virus (VHSV) is a highly contagious virus leading to high mortality in a large panel of freshwater and marine fish species. VHSV isolates originating from marine fish show low pathogenicity in rainbow trout. The analysis of several nearly complete genome sequences from marine and freshwater isolates displaying varying levels of virulence in rainbow trout suggested that only a limited number of amino acid residues might be involved in regulating the level of virulence. Based on a recent analysis of 55 VHSV strains, which were entirely sequenced and phenotyped in vivo in rainbow trout, several amino acid changes putatively involved in virulence were identified. In the present study, these amino acid changes were introduced, alone or in combination, in a highly-virulent VHSV 23-75 genome backbone by reverse genetics. A total of 35 recombinant VHSV variants were recovered and characterized for virulence in trout by bath immersion. Results confirmed the important role of the NV protein (R116S) and highlighted a major contribution of the nucleoprotein N (K46G and A241E) in regulating virulence. Single amino acid changes in these two proteins drastically affect virus pathogenicity in rainbow trout. This is particularly intriguing for the N variant (K46G) which is unable to establish an active infection in the fins of infected trout, the main portal of entry of VHSV in this species, allowing further spread in its host. In addition, salmonid cell lines were selected to assess the kinetics of replication and cytopathic effect of recombinant VHSV and discriminate virulent and avirulent variants. In conclusion, three major virulence markers were identified in the NV and N proteins. These markers explain almost all phenotypes (92.7%) observed in trout for the 55 VHSV strains analyzed in the present study and herein used for the backward validation of virulence markers. The identification of VHSV specific virulence markers in this species is of importance both to predict the in vivo phenotype of viral isolates with targeted diagnostic tests and to improve prophylactic methods such as the development of safer live-attenuated vaccines.

17.
Front Microbiol ; 11: 1984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983011

RESUMO

The Viral Hemorrhagic Septicemia Virus (VHSV) is an OIE notifiable pathogen widespread in the Northern Hemisphere that encompasses four genotypes and nine subtypes. In Europe, subtype Ia impairs predominantly the rainbow trout industry causing severe rates of mortality, while other VHSV genotypes and subtypes affect a number of marine and freshwater species, both farmed and wild. VHSV has repeatedly proved to be able to jump to rainbow trout from the marine reservoir, causing mortality episodes. The molecular mechanisms regulating VHSV virulence and host tropism are not fully understood, mainly due to the scarce availability of complete genome sequences and information on the virulence phenotype. With the scope of identifying in silico molecular markers for VHSV virulence, we generated an extensive dataset of 55 viral genomes and related mortality data obtained from rainbow trout experimental challenges. Using statistical association analyses that combined genetic and mortality data, we found 38 single amino acid polymorphisms scattered throughout the complete coding regions of the viral genome that were putatively involved in virulence of VHSV in trout. Specific amino acid signatures were recognized as being associated with either low or high virulence phenotypes. The phylogenetic analysis of VHSV coding regions supported the evolution toward greater virulence in rainbow trout within subtype Ia, and identified several other subtypes which may be prone to be virulent for this species. This study sheds light on the molecular basis for VHSV virulence, and provides an extensive list of putative virulence markers for their subsequent validation.

18.
Virol J ; 16(1): 140, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752912

RESUMO

BACKGROUND: Next generation sequencing (NGS) is becoming widely used among diagnostics and research laboratories, and nowadays it is applied to a variety of disciplines, including veterinary virology. The NGS workflow comprises several steps, namely sample processing, library preparation, sequencing and primary/secondary/tertiary bioinformatics (BI) analyses. The latter is constituted by a complex process extremely difficult to standardize, due to the variety of tools and metrics available. Thus, it is of the utmost importance to assess the comparability of results obtained through different methods and in different laboratories. To achieve this goal, we have organized a proficiency test focused on the bioinformatics components for the generation of complete genome sequences of salmonid rhabdoviruses. METHODS: Three partners, that performed virus sequencing using different commercial library preparation kits and NGS platforms, gathered together and shared with each other 75 raw datasets which were analyzed separately by the participants to produce a consensus sequence according to their own bioinformatics pipeline. Results were then compared to highlight discrepancies, and a subset of inconsistencies were investigated more in detail. RESULTS: In total, we observed 526 discrepancies, of which 39.5% were located at genome termini, 14.1% at intergenic regions and 46.4% at coding regions. Among these, 10 SNPs and 99 indels caused changes in the protein products. Overall reproducibility was 99.94%. Based on the analysis of a subset of inconsistencies investigated more in-depth, manual curation appeared the most critical step affecting sequence comparability, suggesting that the harmonization of this phase is crucial to obtain comparable results. The analysis of a calibrator sample allowed assessing BI accuracy, being 99.983%. CONCLUSIONS: We demonstrated the applicability and the usefulness of BI proficiency testing to assure the quality of NGS data, and recommend a wider implementation of such exercises to guarantee sequence data uniformity among different virology laboratories.


Assuntos
Biologia Computacional/métodos , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Vírus da Necrose Hematopoética Infecciosa/genética , Novirhabdovirus/genética , Análise de Sequência de DNA/normas , Animais , Peixes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
19.
Virus Evol ; 4(2): vey019, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30046454

RESUMO

Infectious pancreatic necrosis virus (IPNV) is a naked double-stranded RNA virus with a bi-segmented genome that is classified within the family Birnaviridae, genus Aquabirnavirus. IPNV was first detected in Italian trout farms in the late 1970s and ultimately became endemic. To characterize the evolution of IPNV circulating in Italy, particularly whether there is a link between evolutionary rate and virulence, we obtained and analyzed the VP1 (polymerase) and the pVP2 (major capsid protein precursor) sequences from 75 IPNV strains sampled between 1978 and 2017. These data revealed that the Italian IPNV exhibit relatively little genetic variation over the sampling period, falling into four genetic clusters within a single genogroup (group 2 for VP1 and genogroup V for pVP2) and contained one example of inter-segment reassortment. The mean evolutionary rates for VP1 and pVP2 were estimated to be 1.70 and 1.45 × 10-4 nucleotide substitutions per site, per year, respectively, and hence significantly lower than those seen in other Birnaviruses. Similarly, the relatively low ratios of non-synonymous (dN) to synonymous (dS) nucleotide substitutions per site in both genes indicated that IPNV was subject to strong selective constraints, again in contrast to other RNA viruses infecting salmonids that co-circulate in the same area during the same time period. Notably, all the Italian IPNV harbored a proline at position 217 (P217) and a threonine at position 221 (T221) in pVP2, both of which are associated with a low virulence phenotype. We therefore suggest the lower virulence of IPNV may have resulted in reduced rates of virus replication and hence lower rates of evolutionary change. The data generated here will be of importance in understanding the factors that shape the evolution of Aquabirnaviruses in nature.

20.
J Fish Dis ; 41(7): 1063-1075, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29572941

RESUMO

This study fully describes a severe disease outbreak occurred in 2016 in black bullhead catfish farmed in Italy. Affected fish showed nervous clinical signs as well as emaciations and haemorrhagic petechiae on the skin at the fin bases, abdomen and gills. Viral isolation in cell culture allowed the subsequent identification of a rhabdovirus, tentatively named ictalurid rhabdovirus (IcRV), through electron microscopy, immunofluorescence and whole genome sequencing (WGS). The newly isolated virus, together with 14 additional viral strains stored in our repository and detected during similar mortality episodes in the period 1993-2016, was phylogenetically analysed on the basis of the nucleoprotein and the glycoprotein nucleotide and amino acid sequences. The genetic distances among Italian IcRV strains were also estimated. Our results show that all the IcRV strains belong to the genus Sprivivirus and are closely related to the tench rhabdovirus (TenRV). Italian catfish production is constantly decreasing, mainly due to viral infections, which include the newly characterized IcRV. Data presented in this work will assist to investigate the molecular epidemiology and the diffusive dynamics of this virus and to develop adequate surveillance activities.


Assuntos
Doenças dos Peixes/epidemiologia , Ictaluridae , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/isolamento & purificação , Animais , Surtos de Doenças/veterinária , Doenças dos Peixes/virologia , Itália/epidemiologia , Filogenia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Análise de Sequência de RNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...