Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915484

RESUMO

In vitro facsimiles of biomolecular condensates are formed by different types of intrinsically disordered proteins including prion-like low complexity domains (PLCDs). PLCD condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model and information regarding intra- and inter-chain contacts that is extracted from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations. The key ingredient of the generalized Rouse model is the Zimm matrix that we compute from equilibrium MMC simulations. We compute two flavors of Zimm matrices, one referred to as the single-chain model that accounts only for intra-chain contacts, and the other referred to as a collective model, that accounts for inter-chain interactions. The single-chain model systematically overestimates the storage and loss moduli, whereas the collective model reproduces the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two models proves to be most accurate. In line with the theory of Rouse, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic versus dominantly viscous behaviors is influenced by the totality of the relaxation modes. Hence, our analysis suggests that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain distributions of relaxation times that underlie the dynamics within condensates.

2.
Nat Commun ; 15(1): 4408, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782886

RESUMO

Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.


Assuntos
Transição de Fase , Ácido Glutâmico/química , Cloretos/química , Humanos , Soluções , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Separação de Fases
3.
ACS Sens ; 9(6): 3096-3104, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753414

RESUMO

Lateral flow assays (LFAs) are currently the most popular point-of-care diagnostics, rapidly transforming disease diagnosis from expensive doctor checkups and laboratory-based tests to potential on-the-shelf commodities. Yet, their sensitive element, a monoclonal antibody, is expensive to formulate, and their long-term storage depends on refrigeration technology that cannot be met in resource-limited areas. In this work, LCB1 affibodies (antibody mimetic miniproteins) were conjugated to bovine serum albumin (BSA) to afford a high-avidity synthetic capture (LCB1-BSA) capable of detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and virus like particles (VLPs). Substituting the monoclonal antibody 2B04 for LCB1-BSA (stable up to 60 °C) significantly improved the thermal stability, shelf life, and affordability of plasmonic-fluor-based LFAs (p-LFAs). Furthermore, this substitution significantly improved the sensitivity of p-LFAs toward the spike protein and VLPs with precise quantitative ability over 2 and 3 orders of magnitude, respectively. LCB1-BSA sensors could detect VLPs at 100-fold lower concentrations, and this improvement, combined with their robust nature, enabled us to develop an aerosol sampling technology to detect aerosolized viral particles. Synthetic captures like LCB1-BSA can increase the ultrasensitivity, availability, sustainability, and long-term accuracy of LFAs while also decreasing their manufacturing costs.


Assuntos
Aerossóis , Antígenos Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Aerossóis/química , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Soroalbumina Bovina/química , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Imunoensaio/métodos , Temperatura , Limite de Detecção
4.
Mol Cell ; 84(7): 1188-1190, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579677

RESUMO

In his commentary in this issue of Molecular Cell,1 Struhl reasons that the term "intrinsically disordered regions" represents a vague and confusing concept for protein function. However, the term "intrinsically disordered" highlights the important physicochemical characteristic of conformational heterogeneity. Thus, "intrinsically disordered" is the counterpart to the term "folded, " with neither term having specific functional implications.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica
5.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649740

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Assuntos
Condensados Biomoleculares , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Condensados Biomoleculares/química , Recuperação de Fluorescência Após Fotodegradação , Difração de Nêutrons , Substâncias Macromoleculares/química , Proteínas/química
6.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562796

RESUMO

Phase separation in aqueous solutions of macromolecules is thought to underlie the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phase. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. Do all components contribute equally or very differently to the driving forces for phase separation? Currently, we lack a coherent formalism to answer this question, a gap we remedy in this work through the introduction of a formalism we term energy dominance analysis. This approach rests on model-free analysis of shapes of the dilute arms of phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. We present the formalism that underlies dominance analysis, and establish its accuracy and flexibility by deploying it to analyse phase spaces probed in silico, in vitro , and in cellulo .

7.
Trends Cell Biol ; 34(4): 274-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429121

RESUMO

Can the fusion/fission of biomolecular condensates be regulated in cells? In a recent study, Wu et al. show that phosphorylation of a key scaffold protein that drives condensates in postsynaptic densities modulates the apparent miscibility of underlying components, thus enabling intracondensate demixing-to-mixing transitions.


Assuntos
Fosforilação
8.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , Separação de Fases , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
9.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464104

RESUMO

Stress granules form via co-condensation of RNA binding proteins with prion-like low complexity domains (PLCDs) and RNA molecules released by stress-induced polysomal runoff. Homotypic interactions among PLCDs can drive amyloid fibril formation and this is enhanced by ALS-associated mutations. We find that homotypic interactions that drive condensation versus fibril formation are separable for A1-LCD, the PLCD of hnRNPA1. These separable interactions lead to condensates that are metastable versus fibrils that are globally stable. Metastable condensates suppress fibril formation, and ALS-associated mutations enhance fibril formation by weakening condensate metastability. Mutations designed to enhance A1-LCD condensate metastability restore wild-type behaviors of stress granules in cells even when ALS-associated mutations are present. This suggests that fibril formation can be suppressed by enhancing condensate metastability through condensate-driving interactions.

10.
Nucleus ; 15(1): 2319957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38443761

RESUMO

In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.


Assuntos
Nucléolo Celular , Domínios Proteicos
11.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873180

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

12.
Nat Chem ; 15(12): 1693-1704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932412

RESUMO

Co-phase separation of RNAs and RNA-binding proteins drives the biogenesis of ribonucleoprotein granules. RNAs can also undergo phase transitions in the absence of proteins. However, the physicochemical driving forces of protein-free, RNA-driven phase transitions remain unclear. Here we report that various types of RNA undergo phase separation with system-specific lower critical solution temperatures. This entropically driven phase separation is an intrinsic feature of the phosphate backbone that requires Mg2+ ions and is modulated by RNA bases. RNA-only condensates can additionally undergo enthalpically favourable percolation transitions within dense phases. This is enabled by a combination of Mg2+-dependent bridging interactions between phosphate groups and RNA-specific base stacking and base pairing. Phase separation coupled to percolation can cause dynamic arrest of RNAs within condensates and suppress the catalytic activity of an RNase P ribozyme. Our work highlights the need to incorporate RNA-driven phase transitions into models for ribonucleoprotein granule biogenesis.


Assuntos
RNA Catalítico , RNA , Temperatura , Proteínas de Ligação a RNA , Fosfatos , Transição de Fase
13.
Nat Commun ; 14(1): 7678, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996438

RESUMO

Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.


Assuntos
Condensados Biomoleculares , RNA , Termodinâmica
14.
Res Sq ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790538

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

15.
Cell ; 186(22): 4936-4955.e26, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37788668

RESUMO

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.


Assuntos
Montagem e Desmontagem da Cromatina , Complexos Multiproteicos , Proteínas Nucleares , Humanos , Cromatina , Proteínas de Ligação a DNA/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo
16.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886520

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

17.
Biophys J ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717144

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. In addition, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation.

18.
Nat Commun ; 14(1): 5527, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684240

RESUMO

Prion-like low-complexity domains (PLCDs) are involved in the formation and regulation of distinct biomolecular condensates that form via phase separation coupled to percolation. Intracellular condensates often encompass numerous distinct proteins with PLCDs. Here, we combine simulations and experiments to study mixtures of PLCDs from two RNA-binding proteins, hnRNPA1 and FUS. Using simulations and experiments, we find that 1:1 mixtures of A1-LCD and FUS-LCD undergo phase separation more readily than either of the PLCDs on their own due to complementary electrostatic interactions. Tie line analysis reveals that stoichiometric ratios of different components and their sequence-encoded interactions contribute jointly to the driving forces for condensate formation. Simulations also show that the spatial organization of PLCDs within condensates is governed by relative strengths of homotypic versus heterotypic interactions. We uncover rules for how interaction strengths and sequence lengths modulate conformational preferences of molecules at interfaces of condensates formed by mixtures of proteins.


Assuntos
Príons , Condensados Biomoleculares , Eletricidade Estática
19.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609232

RESUMO

Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.

20.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461587

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. Additionally, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation. SIGNIFICANCE: Phase separation has emerged as a process of significant relevance to sorting macromolecules into distinct compartments, thereby enabling spatial and temporal control over cellular matter. Considerable effort is being invested into uncovering the driving forces that enable the separation of macromolecular solutions into coexisting phases. At its heart, this process is governed by the balance of macromolecule-solvent, inter-macromolecule, and solvent-solvent interactions. We show that the driving forces for phase separation, including the coefficients that measure interaction strengths between macromolecules, can be extracted by titrating the concentrations of crowders that enable macromolecules to phase separate at lower concentrations. Our work paves the way to leverage specific categories of measurements for quantitative characterizations of driving forces for phase separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...