Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11512, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460544

RESUMO

This study aimed to develop a robust predictive model for tetracycline (TC) adsorption onto biochar (BC) by employing machine learning techniques to investigate the underlying driving factors. Four machine learning algorithms, namely Random Forest (RF), Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), were used to model the adsorption of TC on BC using the data from 295 adsorption experiments. The analysis revealed that the RF model had the highest predictive accuracy (R2 = 0.9625) compared to ANN (R2 = 0.9410), GBDT (R2 = 0.9152), and XGBoost (R2 = 0.9592) models. This study revealed that BC with a specific surface area (S (BET)) exceeding 380 cm3·g-1 and particle sizes ranging between 2.5 and 14.0 nm displayed the greatest efficiency in TC adsorption. The TC-to-BC ratio was identified as the most influential factor affecting adsorption efficiency, with a weight of 0.595. The concentration gradient between the adsorbate and adsorbent was demonstrated to be the principal driving force behind TC adsorption by BC. A predictive model was successfully developed to estimate the sorption performance of various types of BC for TC based on their properties, thereby facilitating the selection of appropriate BC for TC wastewater treatment.


Assuntos
Poluentes Químicos da Água , Adsorção , Cinética , Tetraciclina , Antibacterianos , Carvão Vegetal , Aprendizado de Máquina
2.
3 Biotech ; 13(7): 244, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346389

RESUMO

A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.

3.
J Food Sci Technol ; 60(3): 1088-1096, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908366

RESUMO

Kombucha beverage produced through fermentation of sugared tea using bacteria and yeast has gained attention for its beneficial health benefits. However, the cost linked to the raw materials often increases the upstream process expenses, thereby the overall operating expenditures. Thus, there is a need to explore alternative waste and cost-effective raw materials for Kombucha fermentation. The present study, compared the physico-chemical and microbial growth pattern of Kombucha beverage production using tea waste from the tea processing industries with that of the green/black tea, reporting similar trends irrespective of its type. Further, the amplicon sequencing of 16S rRNA showed dominant presence of Komagataeibacter rhaeticus and high throughput sequencing of ITS1 confirmed the presence of yeast species similar to Brettanomyces bruxellensis in the tea waste based Kombucha beverage. Appreciable amount of carbohydrates (8.5/100 g) and energy (34 kcal/100 g) with appropriate organoleptic properties favourable for human consumption were also observed during the nutritional content and qualitative property assessment. The overall study showed a broad taxonomic and functional diversity existing during Kombucha fermentation process with tea waste to maintain a sustained eco-system to facilitate cost-effective beverage production with desired properties for safe consumption. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05476-3.

4.
Environ Sci Pollut Res Int ; 30(8): 20721-20735, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36255572

RESUMO

Phosphorus recovery is indispensable due to the rapid depletion of its natural reserves and excessive utility in agriculture. Though human urine has high nutrient content including phosphate, nitrogen and potassium; direct use as a fertilizer is restricted due to hygienic, environmental, social and ethical issues. To overcome these limitations, the nutrients are precipitated by the external addition of magnesium (Mg) to form a slow-releasing fertilizer called struvite. The present study aims to maximize phosphate recovery through optimizing struvite production by an emerging electrocoagulation technique. A maximum of 95% phosphate recovery was achieved using inter-electrode distance of 0.5 cm, 2 A current from undiluted urine using Mg-Mg electrodes in a reaction time of 30 min. Further, kinetic modeling of phosphate recovery through electrocoagulation was conducted to comprehend the intended mechanism through the order of kinetics. The results revealed that the data best correlated with first-order kinetics with a correlation coefficient of 0.95. Electrocoagulation improved the supernatant quality by reducing the ion concentrations other than phosphate (30-50%), salinity (40-45%), and microbial population (99%). Qualitative assessment of the precipitate through sophisticated analysis further confirmed the presence of struvite crystals.


Assuntos
Fertilizantes , Fosfatos , Humanos , Fosfatos/química , Estruvita/química , Fertilizantes/análise , Cinética , Fósforo/análise , Magnésio/química , Eletrocoagulação , Urina/química
5.
Bioresour Technol ; 351: 127038, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35331886

RESUMO

Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Indústrias , Tecnologia
6.
Chemosphere ; 293: 133528, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995624

RESUMO

The transition towards a bio-based economy has led to an unprecedented surge in fresh water consumption that renders biofuel a high water footprint product. The depleting fresh water resources have exacerbated the situation which necessitates the exploration of non-potable water for biorefinery purposes. In the current study, seawater is used as a plausible alternative reaction medium for pretreatment and saccharification of rice straw. Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) was employed to model, predict and validate cellulose release and reducing sugar yield from rice straw subjected to microwave-NaOH pretreatment. The optimized pretreatment conditions were determined to be 8.54% substrate loading, 1.94% NaOH and 4.09 min which resulted in the maximum cellulose release of 65.43% and reducing sugar yield of 0.554 g/g. Several physico-chemical studies of the raw and pretreated biomass were carried out using bomb calorimetry, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) analysis and thermal gravimetric analysis (TGA) to examine the efficacy of pretreatment. Evidences of an apparent delignification was substantiated by the increase in surface area from 7.719 to 44.188 m2 g-1and pore volume from 0.039 to 0.071 mlg-1 which was consistent with the decrease in energy density and distorted surface morphology of the pretreated biomass. Further, the FTIR revealed a reduced peak in the absorption spectral bands at 1636 cm-1 which confirmed the pretreatment mediated degradation of lignin and hemicellulose. This finding provides evidence on the prospects of utilizing abundantly available seawater resource as a reaction medium for sustainable biofuel production.


Assuntos
Oryza , Celulose/química , Hidrólise , Lignina/química , Oryza/química , Água do Mar
7.
Chemosphere ; 286(Pt 1): 131631, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315073

RESUMO

Conventional thermochemical conversion techniques for biofuel production from lignocellulosic biomass is often non-selective and energy inefficient. Microwave assisted pyrolysis (MAP) is cost and energy-efficient technology aimed for value-added bioproducts recovery from biomass with less environmental impacts. The present review emphasizes the performance of MAP in terms of product yield, characteristics and energy consumption and further it compares it with conventional pyrolysis. The significant role of biochar as catalyst in microwave pyrolysis for enhancing the product selectivity and quality, and the influence of microwave activation on product composition identified through sophisticated techniques has been highlighted. Besides, the application of MAP based biochar as soil conditioner and heavy metal immobilization has been illustrated. MAP accomplished at low temperature creates uniform thermal gradient than conventional mode, thereby producing engineered char with hotspots that could be used as catalysts for gasification, energy storage, etc. The stability, nutrient content, surface properties and adsorption capacity of biochar was enhanced by microwave activation, thus facilitating its use as soil conditioner. Many reviews until now on MAP mostly dealt with operational conditions and product yield with limited focus on comparative energy consumption with conventional mode, analytical techniques for product characterization and end application especially concerning agriculture. Thus, the present review adds on to the current state of art on microwave assisted pyrolysis covering all-round aspects of production followed by characterization and applications as soil amendment for increasing crop productivity in addition to the production of value-added chemicals, thus promoting process sustainability in energy and environment nexus.


Assuntos
Carvão Vegetal , Micro-Ondas , Biomassa , Pirólise , Solo
8.
Bioresour Technol ; 339: 125588, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34298244

RESUMO

Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.


Assuntos
Microalgas , Biocombustíveis , Poluição Ambiental , Alimentos , Humanos , Desenvolvimento Vegetal
9.
3 Biotech ; 11(4): 183, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927974

RESUMO

Hexavalent chromium is a toxic heavy metal getting discharged into the environment and water bodies through various industrial processes. Conventional analysis methods call for expensive equipment and complicated sample pretreatment that made unsuitable for onsite detection. Paper is used as an enzyme immobilization platform because of its property to wick the liquid by capillary action; lightweight, cheap and can be easily patterned or cut according to the requirements for developing biosensor. In this study, enzyme immobilization of glucose oxidase (GOx) on filter paper were examined using three polysaccharides such as chitosan, sodium alginate and dextran for entrapment efficiency, activity and stability of the immobilized enzyme. Among the three, chitosan proved efficient for enzyme entrapment with about 90% efficiency at 0.3% (w/v) chitosan. The stability was checked after 1 week at 4 °C and room temperature, where the chitosan entrapped enzyme retained nearly 97% stability at 4 °C. Enzyme inhibition study of GOx and Cr(VI) was carried out using chronoamperometry shown uncompetitive type of inhibition. A paper-based electrochemical biosensor strip was developed by immobilizing GOx enzyme on filter paper using chitosan as an entrapping agent and associating it with a screen-printed carbon electrode for amperometric measurements. The linear range of detection was obtained as 0.05-1 ppm with the limit of detection as 0.05 ppm for Cr(VI), which is the standard permissible limit in potable water. The relative standard deviation (5.6%) indicates good reproducibility of the fabricated biosensor.

10.
Prep Biochem Biotechnol ; 50(8): 849-856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379531

RESUMO

Phenolic compounds such as catechol and resorcinol are toxic and persistent pollutants in the aqueous environment. Detection procedures such as chromatographic and spectrophotometric methods are time-consuming and require sophisticated instruments with skilled manpower. Development of a simple, cost effective, portable and disposable paper based biosensor could be a better alternative to the conventional methods. The present study attempted to develop a paper based biosensor by immobilizing horseradish peroxidase enzyme to detect catechol and resorcinol in aqueous samples. Horseradish peroxidase catalyzes the oxidation of phenolic compounds to semiquinones, which on reaction with a chromogen, 3-methyl 2-benzothiazolinone hydrazine (MBTH) gives faint pink to red color depending on the compound and its concentration in the sample is the basis for biosensing application. Different methods of enzyme immobilization on filter paper like physical adsorption, covalent coupling, and polysaccharide entrapment were executed. The performance of the various enzyme immobilization methods was evaluated by analyzing the developed color intensity using ImageJ software. Entrapment technique is the most effective method of immobilizing enzyme on the filter paper that produces the highest color intensity with better stability. The visible limit of detection (LoD) was observed as 0.45 mM (50 mg/L) for catechol and 0.09 mM (10 mg/L) for resorcinol in aqueous samples.


Assuntos
Técnicas Biossensoriais/métodos , Catecóis/análise , Resorcinóis/análise , Poluentes Químicos da Água/análise , Colorimetria/métodos , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Limite de Detecção , Papel
11.
Environ Sci Pollut Res Int ; 27(22): 27244-27255, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154649

RESUMO

Scale-up and commercialization of biodiesel is often delimited by costly feedstock that adds up to the process costs. These underlying issues demand the exploration of unconventional cheap feed to improve the process economics. Conversion of waste cooking oil (WCO) into biodiesel could reduce the process costs by 60-70%. However, the continuous exposure to heat during frying leads to oxidation as well increase in the free fatty acid (FFA) content which intensifies the time and energy required for transesterification. The present study analyzes the effect of parameters over the conversion of WCO (with 8.17% FFA) into biodiesel via two-step acid-alkali-based microwave-assisted transesterification. Response surface methodology (RSM) was used to optimize the oil:methanol volume ratio, microwave power, and reaction time during the acid-catalyzed esterification to bring down the FFA below 1%. Microwave irradiation of 250 W, with methanol:oil molar ratio of 19.57:1 [oil:methanol volume ratio of 1.31 (expressed as decimal)] and reaction time of 35 s, resulted in 0.082% of FFA. Alkali-catalyzed transesterification with methanol:oil molar ratio of 5:1 with 2% sodium hydroxide at 65 °C thereby produced fatty acid methyl esters (FAMEs) with the volumetric biodiesel yield of 94.6% in 30 min. Physiochemical properties of the transesterified WCO were well comparable with the biodiesel standards. The study highlights the essentiality of multivariate optimization for the esterification process that could aid in understanding the interactive effects of variables over FFA content. Such studies would benefit in scaling up of the transesterification process at industrial level by improving the economics of the overall bioprocess.


Assuntos
Micro-Ondas , Óleos de Plantas , Biocombustíveis , Catálise , Culinária , Esterificação , Metanol
12.
3 Biotech ; 9(4): 124, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863703

RESUMO

The present work describes the inhibition studies of free as well as immobilized urease by different heavy metals. Porous silicon (PS) films prepared by electrochemical etching were used for urease immobilization by physical adsorption. The enzyme was subjected to varying concentrations of Cr6+, Cr3+, Cu2+, Fe2+, Cd2+ and Ni2+ and analyzed for the variation in the activity. To study the effect of other heavy metals on the interaction of urease and Cr6+, free as well as immobilized urease was subjected to the combination of each metal ion with Cr6+. Results proved the sensitivity of free as well as immobilized urease towards heavy metals by observed reduction in activity. Immobilized urease showed less degree of inhibition compared to free urease when tested for inhibition by individual metal ions and in combination with Cr6+. IC50 values were found higher for inhibition by the combination of metal ions with Cr6+. Interaction of heavy metal ions with functional groups in active site of urease and limitations of mass transfer are the two factors responsible for the variation in activity of urease. Relation between the variation of urease activity and amount of heavy metals can be applied in biosensor development for determining the concentration of Cr6+ present in the water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...