Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38636472

RESUMO

Dielectrophoresis is a potential candidate for aligning nanorods on electrodes, in which the interplay between electric fields and microfluidics is critically associated with its yield. Despite much of previous work on dielectrophoresis, the impact of frequency modulation on dielectrophoresis-driven nanorod self-assembly is insufficiently understood. In this work, we systematically explore the frequency dependence of the self-alignment of silicon nanorod using a microfluidic channel. We vary the frequency from 1kHz to 1000 kHz and analyze the resulting alignments in conjunction with numerical analysis. Our experiment reveals an optimal alignment yield at approximately 100 kHz, followed by a decrease in alignment efficiency. The nanorod self-alignments are influenced by multiple consequences, including the trapping effect, induced electrical double layer, electrohydrodynamic flow, and particle detachment. This study provides insights into the impact of frequency modulation of electric fields on the alignment of silicon nanorods using dielectrophoresis, broadening its use in various future nanotechnology applications.

2.
Sci Rep ; 7(1): 2808, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584229

RESUMO

New metrics of the color and circadian performances of down-converted white light-emitting diodes (DC-WLEDs) are rapidly becoming popular in smart lighting systems. This is due to the increased desire for accurate analytical methods to measure the effects of newly developed quantum dot (QD)-based lighting on the vision, color, and circadian sensors of retina cells in the human eye. In this regard, a two-measure system known as technical memorandum TM-30-2015 (Illuminating Engineering Society of North America), encompassing the color fidelity index (CFI, R f ) and the color gamut index (CGI, R g ), has been developed as a new metrics of color to replace the currently utilized color rendering index (CRI, R a ). In addition, the tunability of the circadian efficacy of radiation (CER) is now more important due to its effect on the control of melatonin suppression/secretion, resetting of the central/local clocks of individuals given their daily cycles, and benefits to human health. In this paper, we developed and analyzed six-colored perovskite (Pe; cyan, green, yellowish green, amber, orange, and red colors) QDs-based multi-package WLED, and optimized the SPDs of tunable PeQD-based multi-package WLEDs in terms of promising human-centric lighting device, given its optimized visual energy, color qualities and health-promoting effects.

3.
Sensors (Basel) ; 9(9): 7550-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22400007

RESUMO

In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

4.
Appl Opt ; 47(25): 4491-500, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18758518

RESUMO

Color characteristics of an RGBW (red, green, blue, white) electrophoretic display (EPD) prototype developed by Samsung Electronics are analyzed. EPD shows strong crosstalk between subpixels because of both the fringe field between subpixels and the scattering phenomena at the display surface. An RGB-to-RGBW color-decomposition algorithm optimized to EPD characteristics is developed that compensates for color deterioration due to the fringe field and scattering phenomena. For the four-color-decomposition algorithm, white is added to the primary colors to enhance the reflectance of the vivid colors while minimizing chroma loss. The psychophysical experimental result shows that images rendered with the algorithms developed in this study are preferred more than 90% of the time over those rendered with algorithms from previous studies. This research proves that, in spite of the limited physical property of EPD, the color quality can be improved dramatically through the use of well-designed color-rendering algorithms.

5.
Appl Opt ; 47(13): 2207-14, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18449284

RESUMO

A display system that simultaneously displays two-dimensional (2D) and three-dimensional (3D) images using a pinhole array on a liquid crystal (LC) panel is proposed. Using the transparent structure of the LC panel, the system can generate or eliminate pinholes electrically and can display a 3D image in a selectable specific area of the display panel, while 2D images are displayed on the rest of the screen. An analysis showing the advantages and limitations of the proposed system is provided. Finally, the proposed principle is proven by experimental results.

6.
IEEE Trans Syst Man Cybern B Cybern ; 36(4): 835-48, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16903368

RESUMO

This paper introduces a navigation method for a teleoperated mobile agent (or robot) moving in an unstructured environment that includes unknown obstacles and uneven terrain, based on a guided-navigation algorithm (GNA) and a rollover-prevention algorithm (RPA). Although the mobile agent is primarily driven by an operator at a remote site, it reacts autonomously for avoiding collision with obstacles and for preventing rollover when it suspects/detects possible collision or rollover. The autonomous reactive motion is normally unexpected, thus there exists the inconsistency between the intended motion and the controlled motion of the agent from the operator. A force-reflection technique utilizing a force-feedback joystick is developed to manipulate this inconsistency. To verify the feasibility and effectiveness of the proposed navigation method, experiments with the Robot for Hazardous Application-Double Tracks (ROBHAZ-DT) (actual mobile agent) are successfully carried out.


Assuntos
Inteligência Artificial , Meio Ambiente , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Robótica/métodos , Telemetria/métodos , Interface Usuário-Computador , Simulação por Computador , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...