Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
BMC Genomics ; 25(1): 914, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354409

RESUMO

BACKGROUND: Cladocopium infistulum (Symbiodiniaceae) is a dinoflagellate specialized to live in symbiosis with western Pacific giant clams (Tridacnidae). Unlike coral-associated symbionts, which reside within the host cells, C. infistulum inhabits the extracellular spaces of the clam's digestive diverticula. It is phylogenetically basal to a large species complex of stress-tolerant Cladocopium, many of which are associated with important reef-building corals in the genus Porites. This close phylogenetic relationship may explain why C. infistulum exhibits high thermotolerance relative to other tridacnid symbionts. Moreover, past analyses of microsatellite loci indicated that Cladocopium underwent whole-genome duplication prior to the adaptive radiations that led to its present diversity. RESULTS: A draft genome assembly of C. infistulum was produced using long- and short-read sequences to explore the genomic basis for adaptations underlying thermotolerance and extracellular symbiosis among dinoflagellates and to look for evidence of genome duplication. Comparison to three other Cladocopium genomes revealed no obvious over-representation of gene groups or families whose functions would be important for maintaining C. infistulum's unique physiological and ecological properties. Preliminary analyses support the existence of partial or whole-genome duplication among Cladocopium, but additional high-quality genomes are required to substantiate these findings. CONCLUSION: Although this investigation of Cladocopium infistulum revealed no patterns diagnostic of heat tolerance or extracellular symbiosis in terms of overrepresentation of gene functions or genes under selection, it provided a valuable genomic resource for comparative analyses. It also indicates that ecological divergence among Cladocopium species, and potentially among other dinoflagellates, is partially governed by mechanisms other than gene content. Thus, additional high-quality, multiomic data are needed to explore the molecular basis of key phenotypes among symbiotic microalgae.


Assuntos
Bivalves , Dinoflagellida , Filogenia , Simbiose , Termotolerância , Simbiose/genética , Animais , Dinoflagellida/genética , Dinoflagellida/fisiologia , Termotolerância/genética , Bivalves/genética , Bivalves/fisiologia , Genoma , Adaptação Fisiológica/genética , Genômica
2.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091725

RESUMO

The experimental challenges posed by integral membrane proteins hinder molecular understanding of transmembrane signaling mechanisms. Here, we exploited protein crosslinking assays in living cells to follow conformational and dynamic stimulus signals in Tsr, the Escherichia coli serine chemoreceptor. Tsr mediates serine chemotaxis by integrating transmembrane serine-binding inputs with adaptational modifications of a methylation helix bundle to regulate a signaling kinase at the cytoplasmic tip of the receptor molecule. We created a series of cysteine replacements at Tsr residues adjacent to hydrophobic packing faces of the bundle helices and crosslinked them with a cell-permeable, bifunctional thiol-reagent. We identified an extensively crosslinked dynamic junction midway through the methylation helix bundle that seemed uniquely poised to respond to serine signals. We explored its role in mediating signaling shifts between different packing arrangements of the bundle helices by measuring crosslinking in receptor molecules with apposed pairs of cysteine reporters in each subunit and assessing their signaling behaviors with an in vivo kinase assay. In the absence of serine, the bundle helices evinced compact kinase-ON packing arrangements; in the presence of serine, the dynamic junction destabilized adjacent bundle segments and shifted the bundle to an expanded, less stable kinase-OFF helix-packing arrangement. An AlphaFold 3 model of kinase-active Tsr showed a prominent bulge and kink at the dynamic junction that might antagonize stable structure at the receptor tip. Serine stimuli probably inhibit kinase activity by shifting the bundle to a less stably-packed conformation that relaxes structural strain at the receptor tip, thereby freezing kinase activity.

3.
BMJ Open ; 14(8): e081629, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134435

RESUMO

INTRODUCTION: Undernutrition during pregnancy is linked to adverse pregnancy and birth outcomes and has downstream effects on the growth and development of children. The gut microbiome has a profound influence on the nutritional status of the host. This phenomenon is understudied in settings with a high prevalence of undernutrition, and further investigation is warranted to better understand such interactions. METHODS AND ANALYSIS: This is a prospective, longitudinal observational study to investigate the relationship between prokaryotic and eukaryotic microbes in the gut and their association with maternal body mass index (BMI), gestational weight gain, and birth and infant outcomes among young mothers (17-24 years) in Matiari District, Pakistan. We aim to enrol 400 pregnant women with low and normal BMIs at the time of recruitment (<16 weeks of gestation). To determine the weight gain during pregnancy, maternal weight is measured in the first and third trimesters. Gut microbiome dynamics (bacterial and eukaryotic) will be assessed using 16S and 18S rDNA surveys applied to the maternal stool samples. Birth outcomes include birth weight, small for gestational age, large for gestational age, preterm birth and mortality. Infant growth and nutritional parameters include WHO z-scores for weight, length and head circumference at birth through infancy. To determine the impact of the maternal microbiome, including exposure to pathogens and parasites on the development of the infant microbiome, we will analyse maternal and infant microbiome composition, micronutrients in serum using metallomics (eg, zinc, magnesium and selenium) and macronutrients in the stool. Metatranscriptomics metabolomics and markers of inflammation will be selectively deployed on stool samples to see the variations in dietary intake and maternal nutritional status. We will also use animal models to explore the bacterial and eukaryotic components of the microbiome. ETHICS AND DISSEMINATION: The study is approved by the National Bioethics Committee (NBC) in Pakistan, the Ethics Review Committee (ERC) at Aga Khan University and the Research Ethics Board (REB) at the Hospital for Sick Children, and findings will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05108675.


Assuntos
Microbioma Gastrointestinal , Estado Nutricional , Resultado da Gravidez , Humanos , Feminino , Gravidez , Paquistão/epidemiologia , Estudos Prospectivos , Estudos Longitudinais , Adolescente , Recém-Nascido , Resultado da Gravidez/epidemiologia , Adulto Jovem , Lactente , Saúde do Lactente , Estudos Observacionais como Assunto , População Rural/estatística & dados numéricos , Fenômenos Fisiológicos da Nutrição Materna , Índice de Massa Corporal , Ganho de Peso na Gestação , Complicações na Gravidez/microbiologia , Complicações na Gravidez/epidemiologia
4.
Behav Sci (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920782

RESUMO

Pandemics, and other risk-related contexts, require dynamic changes in behavior as situations develop. Human behavior is influenced by both explicit (cognitive) and implicit (intuitive) factors. In this study, we used psychological distance as a lens to understand what influences our decision-making with regard to risk in the context of COVID-19. This study was based on the rationale that our relational needs are more concrete to us than the risk of the virus. First, we explored the impact of social-psychological distance on participants' risk perceptions and behavioral willingness. As hypothesized, we found that close social relationships of agents promoted willingness to engage in risky behavior. In the second phase, we tested an intervention designed to increase the concreteness of information about virus transmission as a mechanism to mitigate the bias of social influence. We found that the concreteness intervention resulted in significantly reduced willingness to engage in risky behavior. As such, communications aimed at changing the behavior of citizens during times of increased risk or danger should consider conceptually concrete messaging when communicating complex risk, and hence may provide a valuable tool in promoting health-related behavior.

5.
PLoS Comput Biol ; 20(6): e1012208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900844

RESUMO

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Mapas de Interação de Proteínas/fisiologia , Biologia Computacional , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Bases de Dados de Proteínas , Aprendizado de Máquina , Análise por Conglomerados
7.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733748

RESUMO

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Assuntos
DNA , DNA/química , DNA/metabolismo , Ligantes , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Conformação de Ácido Nucleico , Sítios de Ligação , Relação Estrutura-Atividade , Modelos Moleculares , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Linhagem Celular Tumoral
8.
Gut Microbes ; 16(1): 2356277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798005

RESUMO

Gestational diabetes mellitus (GDM) is a metabolic complication that manifests as hyperglycemia during the later stages of pregnancy. In high resource settings, careful management of GDM limits risk to the pregnancy, and hyperglycemia typically resolves after birth. At the same time, previous studies have revealed that the gut microbiome of infants born to mothers who experienced GDM exhibit reduced diversity and reduction in the abundance of several key taxa, including Lactobacillus. What is not known is what the functional consequences of these changes might be. In this case control study, we applied 16S rRNA sequence surveys and metatranscriptomics to profile the gut microbiome of 30 twelve-month-old infants - 16 from mothers with GDM, 14 from mothers without - to examine the impact of GDM during pregnancy. Relative to the mode of delivery and sex of the infant, maternal GDM status had a limited impact on the structure and function of the developing microbiome. While GDM samples were associated with a decrease in alpha diversity, we observed no effect on beta diversity and no differentially abundant taxa. Further, while the mode of delivery and sex of infant affected the expression of multiple bacterial pathways, much of the impact of GDM status on the function of the infant microbiome appears to be lost by twelve months of age. These data may indicate that, while mode of delivery appears to impact function and diversity for longer than anticipated, GDM may not have persistent effects on the function nor composition of the infant gut microbiome.


Assuntos
Bactérias , Diabetes Gestacional , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Diabetes Gestacional/microbiologia , Feminino , Gravidez , Lactente , RNA Ribossômico 16S/genética , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Adulto , Fezes/microbiologia
9.
PLoS One ; 19(4): e0301110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568936

RESUMO

The present study was undertaken to profile and compare the cecal microbial communities in conventionally (CONV) grown and raised without antibiotics (RWA) broiler chickens. Three hundred chickens were collected from five CONV and five RWA chicken farms on days 10, 24, and 35 of age. Microbial genomic DNA was extracted from cecal contents, and the V4-V5 hypervariable regions of the 16S rRNA gene were amplified and sequenced. Analysis of 16S rRNA sequence data indicated significant differences in the cecal microbial diversity and composition between CONV and RWA chickens on days 10, 24, and 35 days of age. On days 10 and 24, CONV chickens had higher richness and diversity of the cecal microbiome relative to RWA chickens. However, on day 35, this pattern reversed such that RWA chickens had higher richness and diversity of the cecal microbiome than the CONV groups. On days 10 and 24, the microbiomes of both CONV and RWA chickens were dominated by members of the phylum Firmicutes. On day 35, while Firmicutes remained dominant in the RWA chickens, the microbiome of CONV chickens exhibited am abundance of Bacteroidetes. The cecal microbiome of CONV chickens was enriched with the genus Faecalibacterium, Pseudoflavonifractor, unclassified Clostridium_IV, Bacteroides, Alistipes, and Butyricimonas, whereas the cecal microbiome of RWA chickens was enriched with genus Anaerofilum, Butyricicoccu, Clostridium_XlVb and unclassified Lachnospiraceae. Overall, the cecal microbiome richness, diversity, and composition were greatly influenced by the management program applied in these farms. These findings provide a foundation for further research on tailoring feed formulation or developing a consortium to modify the gut microbiome composition of RWA chickens.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Galinhas/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Ceco/microbiologia , Firmicutes/genética , Bacteroidetes/genética
10.
BMC Bioinformatics ; 25(1): 121, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515063

RESUMO

BACKGROUND: With the generation of vast compendia of biological datasets, the challenge is how best to interpret 'omics data alongside biochemical and other small-scale experiments to gain meaningful biological insights. Key to this challenge are computational methods that enable domain-users to generate novel hypotheses that can be used to guide future experiments. Of particular interest are flexible modeling platforms, capable of simulating a diverse range of biological systems with low barriers of adoption to those with limited computational expertise. RESULTS: We introduce Cell4D, a spatial-temporal modeling platform combining a robust simulation engine with integrated graphics visualization, a model design editor, and an underlying XML data model capable of capturing a variety of cellular functions. Cell4D provides an interactive visualization mode, allowing intuitive feedback on model behavior and exploration of novel hypotheses, together with a non-graphics mode, compatible with high performance cloud compute solutions, to facilitate generation of statistical data. To demonstrate the flexibility and effectiveness of Cell4D, we investigate the dynamics of CEACAM1 localization in T-cell activation. We confirm the importance of Ca2+ microdomains in activating calmodulin and highlight a key role of activated calmodulin on the surface expression of CEACAM1. We further show how lymphocyte-specific protein tyrosine kinase can help regulate this cell surface expression and exploit spatial modeling features of Cell4D to test the hypothesis that lipid rafts regulate clustering of CEACAM1 to promote trans-binding to neighbouring cells. CONCLUSIONS: Through demonstrating its ability to test and generate hypotheses, Cell4D represents an effective tool to help integrate knowledge across diverse, large and small-scale datasets.


Assuntos
Calmodulina , Fenômenos Fisiológicos Celulares , Simulação por Computador , Membrana Celular
11.
Proc Natl Acad Sci U S A ; 121(14): e2312064121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530894

RESUMO

Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.


Assuntos
Proteínas de Escherichia coli , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Transporte/metabolismo , Quimiotaxia/fisiologia , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366179

RESUMO

Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus and intestinal bacteria in healthy and B-cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with Tritrichomonas musculus functional changes, which were accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single-cell transcriptomics identified distinct Tritrichomonas musculus life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable data sets to drive future mechanistic studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Tritrichomonas , Animais , Camundongos , Eucariotos , Bactérias
13.
Bioinform Adv ; 4(1): vbae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371920

RESUMO

Motivation: Whole microbiome DNA and RNA sequencing (metagenomics and metatranscriptomics) are pivotal to determining the functional roles of microbial communities. A key challenge in analyzing these complex datasets, typically composed of tens of millions of short reads, is accurately classifying reads to their taxa of origin. While still performing worse relative to reference-based short-read tools in species classification, ML algorithms have shown promising results in taxonomic classification at higher ranks. A recent approach exploited to enhance the performance of ML tools, which can be translated to reference-dependent classifiers, has been to integrate the hierarchical structure of taxonomy within the tool's predictive algorithm. Results: Here, we introduce HiTaxon, an end-to-end hierarchical ensemble framework for taxonomic classification. HiTaxon facilitates data collection and processing, reference database construction and optional training of ML models to streamline ensemble creation. We show that databases created by HiTaxon improve the species-level performance of reference-dependent classifiers, while reducing their computational overhead. In addition, through exploring hierarchical methods for HiTaxon, we highlight that our custom approach to hierarchical ensembling improves species-level classification relative to traditional strategies. Finally, we demonstrate the improved performance of our hierarchical ensembles over current state-of-the-art classifiers in species classification using datasets comprised of either simulated or experimentally derived reads. Availability and implementation: HiTaxon is available at: https://github.com/ParkinsonLab/HiTaxon.

14.
Behav Sci (Basel) ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247715

RESUMO

Within the context of reopening society in the summer of 2021, as the UK moved away from 'lockdowns', the Government of Wales piloted the return of organized 'mass gatherings' of people at a number of test events. The current study reports behavioral observations that were made at two of the test events to inform this process. The researchers were particularly interested in four key factors: how (1) context within a venue, (2) environmental design, (3) staffing and social norms, and (4) time across an event, affected the personal protective behaviors of social distancing and face-covering use. Data collection was undertaken by trained observers. Adherence to protective behaviors was generally high, but there is clear evidence that these behaviors were shaped in a systematic way by the environment, situational cues, and the passage of time during the events. Some instances of large-scale non-adherence to personal protective behaviors were documented. An analysis within a dual-process framework suggests ways to understand and respond to supporting target health behaviors in groups of people where intervention is deemed valuable, such as in complex or ambiguous contexts. This is one of the first studies to include a 'true' behavioral measure in understanding human responses to COVID-19. It demonstrates that behavioral observations can add precision and granularity to understanding human behavior in complex real-world contexts. Given the significant physical and mental health burden created acutely and chronically by COVID-19, this work has implications for how governments and organizations support target populations in other complex challenges facing us today, such as in sustainability, and healthy lifestyle behaviors. An individual's intentions are not always matched by their actions, and so the findings support a balanced liberal paternalistic approach where system-level changes support appropriate individual-level decisions to engender collective responsibility and action.

15.
mBio ; 14(5): e0079323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772839

RESUMO

IMPORTANCE: Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Transdução de Sinais , Proteínas de Escherichia coli/química , Proteínas de Bactérias/química
16.
Microbiome ; 11(1): 143, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370188

RESUMO

BACKGROUND: Whole microbiome RNASeq (metatranscriptomics) has emerged as a powerful technology to functionally interrogate microbial communities. A key challenge is how best to process, analyze, and interpret these complex datasets. In a typical application, a single metatranscriptomic dataset may comprise from tens to hundreds of millions of sequence reads. These reads must first be processed and filtered for low quality and potential contaminants, before being annotated with taxonomic and functional labels and subsequently collated to generate global bacterial gene expression profiles. RESULTS: Here, we present MetaPro, a flexible, massively scalable metatranscriptomic data analysis pipeline that is cross-platform compatible through its implementation within a Docker framework. MetaPro starts with raw sequence read input (single-end or paired-end reads) and processes them through a tiered series of filtering, assembly, and annotation steps. In addition to yielding a final list of bacterial genes and their relative expression, MetaPro delivers a taxonomic breakdown based on the consensus of complementary prediction algorithms, together with a focused breakdown of enzymes, readily visualized through the Cytoscape network visualization tool. We benchmark the performance of MetaPro against two current state-of-the-art pipelines and demonstrate improved performance and functionality. CONCLUSIONS: MetaPro represents an effective integrated solution for the processing and analysis of metatranscriptomic datasets. Its modular architecture allows new algorithms to be deployed as they are developed, ensuring its longevity. To aid user uptake of the pipeline, MetaPro, together with an established tutorial that has been developed for educational purposes, is made freely available at https://github.com/ParkinsonLab/MetaPro . The software is freely available under the GNU general public license v3. Video Abstract.


Assuntos
Microbiota , Microbiota/genética , Software , Algoritmos , Bactérias/genética , Genes Bacterianos
17.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090671

RESUMO

Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.

18.
Gut ; 72(8): 1472-1485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36958817

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Assuntos
Arilamina N-Acetiltransferase , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/metabolismo , Colite Ulcerativa/metabolismo , Metaboloma , Fezes , Arilamina N-Acetiltransferase/metabolismo
20.
J Psychiatr Res ; 157: 141-151, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463629

RESUMO

Consistent with cognitive models of social anxiety, socially anxious individuals show cognitive biases that magnify their perceived level of threat in the environment. OBJECTIVES: The first objective was to determine whether attentional bias for socially threatening stimuli occurs after concomitant depression has been controlled. The second objective was to test the effectiveness of the Attention Control Training Program for Social Anxiety (ACTP-SA) for reducing social anxiety attentional bias and improving therapeutic indices in people with social anxiety. METHOD: In the first study, socially anxious (N = 30) and non-anxious individuals (N = 30) completed the Beck Depression Inventory-II, Spielberger's State-Trait Anxiety Inventory, Conner's Social Phobia Inventory, a social-anxiety Stroop test, and a clinical interview. In the second study, individuals with social anxiety (N = 30) were randomly assigned to an experimental group that received 4 sessions of ACTP-SA, or to a sham-intervention control condition. At the post-test and a 3-month follow-up, both groups completed the same measures as in Study 1. RESULTS: In Study 1, socially anxious individuals showed higher attentional bias for threatening stimuli than the controls, after depression had been controlled for. In Study 2, participants in the experimental group, compared with the controls, showed greater reductions in attentional bias, social anxiety, and trait anxiety at post-test and follow-up. CONCLUSIONS: The results underscore the importance of information processing biases in social anxiety and the benefits of attentional bias training as a complementary intervention for modifying symptoms of social anxiety.


Assuntos
Viés de Atenção , Humanos , Medo/psicologia , Atenção , Ansiedade/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...