Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892912

RESUMO

Articular cartilage lacks intrinsic regenerative capabilities, and the current treatments fail to regenerate damaged tissue and lead only to temporary pain relief. These limitations have prompted the development of tissue engineering approaches, including 3D culture systems. Thanks to their regenerative properties and capacity to recapitulate embryonic processes, spheroids obtained from mesenchymal stromal cells are increasingly studied as building blocks to obtain functional tissues. The aim of this study was to investigate the capacity of adipose stromal cells to assemble in spheroids and differentiate toward chondrogenic lineage from the perspective of cartilage repair. Spheroids were generated by two different methods (3D chips vs. Ultra-Low Attachment plates), differentiated towards chondrogenic lineage, and their properties were investigated using molecular biology analyses, biophysical measurement of mass density, weight, and size of spheroids, and confocal imaging. Overall, spheroids showed the ability to differentiate by expressing specific cartilaginous markers that correlate with their mass density, defining a critical point at which they start to mature. Considering the spheroid generation method, this pilot study suggested that spheroids obtained with chips are a promising tool for the generation of cartilage organoids that could be used for preclinical/clinical approaches, including personalized therapy.

2.
PLoS One ; 16(6): e0252907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34101765

RESUMO

Three-dimensional (3D) culture systems like tumor spheroids represent useful in vitro models for drug screening and more broadly for cancer biology research, but the generation of uniform populations of spheroids remains challenging. The possibility to properly characterize spheroid properties would increase the reliability of these models. To address this issue different analysis were combined: i) a new device and relative analytical method for the accurate, simultaneous, and rapid measurement of mass density, weight, and size of spheroids, ii) confocal imaging, and iii) protein quantification, in a clinically relevant 3D model. The LoVo colon cancer cell line forming spheroids, treated with crizotinib (CZB) an ATP-competitive small-molecule inhibitor of the receptor tyrosine kinases, was employed to study and assess the correlation between biophysical and morphological parameters in both live and fixed cells. The new fluidic-based measurements allowed a robust phenotypical characterization of the spheroids structure, offering insights on the spheroids bulk and an accurate measurement of the tumor density. This analysis helps overcome the technical limits of the imaging that hardly penetrates the thickness of 3D structures. Accordingly, we were able to document that CZB treatment has an impact on mass density, which represents a key marker characterizing cancer cell treatment. Spheroid culture is the ultimate technology in drug discovery and the adoption of such precise measurement of the tumor characteristics can represent a key step forward for the accurate testing of treatment's potential in 3D in vitro models.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Neoplasias do Colo/patologia , Crizotinibe/farmacologia , Esferoides Celulares/patologia , Sobrevivência Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
3.
Micromachines (Basel) ; 11(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354148

RESUMO

Gathering precise information on mass density, size and weight of cells or cell aggregates, is crucial for applications in many biomedical fields with a specific focus on cancer research. Although few technical solutions have been presented for single-cell analysis, literature does not cover this aspect for 3D models such as spheroids. Since the research interest on such samples is notably rising, here we describe a flow-apparatus, and the associated physical method and operative protocol for the accurate measurements of mass density, size and weight. The technique is based on the detection of the terminal velocity of a free-falling sample into a specifically conceived analysis flow-channel. Moreover, in order to demonstrate the accuracy and precision of the presented flow-device, analyses were initially carried out on standardized polystyrene beads. Finally, to display the application of the proposed system for biological samples, mass density, size and weight of live SW620 tumor spheroids were analyzed. The combined measurements of such parameters can represent a step toward a deeper understanding of 3D culture models.

4.
Front Immunol ; 11: 564887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424829

RESUMO

To improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant in vitro models of in vivo tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for in vitro testing. In this paper, we employed a flow-based method specifically conceived to measure weight, size and focused onto mass density values of tumor spheroids. These measurements are combined with confocal and digital imaging of such samples. We tested the spheroids of four colorectal cancer (CRC) cell lines that exhibit statistically relevant differences in their physical characteristics, even though starting from the same cell seeding density. These variations are seemingly cell line-dependent and associated with the number of growing cells and the degree of spheroid compaction as well, supported by different adenosine-triphosphate contents. We also showed that this technology can estimate the NK cell killing efficacy by measuring the weight loss and diameter shrinkage of tumor spheroids, alongside with the commonly used cell viability in vitro test. As the activity of NK cells relies on their infiltration rate, the in vitro sensitivity of CRC spheroids proved to be exposure time- and cell line-dependent with direct correlation to the cell viability reduction. All these functional aspects can be measured by the system and are documented by digital image analysis. In conclusion, this flow-based method potentially paves the way towards standardization of 3D cell cultures and its early adoption in cancer research to test antitumor immune response and set up new immunotherapy strategies.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Esferoides Celulares/patologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Sobrevivência Celular , Técnica Indireta de Fluorescência para Anticorpo/métodos , Células HT29 , Humanos , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...