Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Sci Rep ; 14(1): 13980, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886484

RESUMO

Maraviroc (MVC) is an antiretroviral drug capable of binding to CCR5 receptors and block HIV entry into target cells. Moreover, MVC can activate NF-kB pathway and induce viral transcription in HIV-infected cells, being proposed as a latency reversal agent (LRA) in HIV cure strategies. However, the evaluation of immunological and metabolic parameters induced by MVC concentrations capable of inducing HIV transcription have not been explored in depth. We cultured isolated CD4 T cells in the absence or presence of MVC, and evaluated the frequency of CD4 T cell subpopulations and activation markers levels by flow cytometry, and the oxidative and glycolytic metabolic rates of CD4 T cells using a Seahorse Analyzer. Our results indicate that a high concentration of MVC did not increase the levels of activation markers, as well as glycolytic or oxidative metabolic rates in CD4 T cells. Furthermore, MVC did not induce significant changes in the frequency and activation levels of memory cell subpopulations. Our data support a safety profile of MVC as a promising LRA candidate since it does not induce alterations of the immunological and metabolic parameters that could affect the functionality of these immune cells.


Assuntos
Linfócitos T CD4-Positivos , Maraviroc , Maraviroc/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Humanos , Glicólise/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/imunologia , Células Cultivadas , Triazóis/farmacologia , HIV-1/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Antagonistas dos Receptores CCR5/farmacologia , Cicloexanos/farmacologia , Adulto
3.
Nat Commun ; 15(1): 178, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212337

RESUMO

HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs. late (week 24 post-infection) treatment initiation in SIVmac251-infected male cynomolgus macaques receiving 2 years of therapy before analytical treatment interruption. We show that early treatment strongly promotes post-treatment control, which is not related to a lower frequency of infected cells at treatment interruption. Rather, early treatment favors the development of long-term memory CD8+ T cells with enhanced proliferative and SIV suppressive capacity that are able to mediate a robust secondary-like response upon viral rebound. Our model allows us to formally demonstrate a link between treatment initiation during primary infection and the promotion of post-treatment control and provides results that may guide the development of new immunotherapies for HIV remission.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Carga Viral
4.
Nat Med ; 29(3): 583-587, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807684

RESUMO

Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus. Low levels of immune activation and waning HIV-1-specific humoral and cellular immune responses indicated a lack of ongoing antigen production. Four years after analytical treatment interruption, the absence of a viral rebound and the lack of immunological correlates of HIV-1 antigen persistence are strong evidence for HIV-1 cure after CCR5Δ32/Δ32 HSCT.


Assuntos
Infecções por HIV , HIV-1 , Transplante de Células-Tronco Hematopoéticas , Masculino , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , HIV-1/genética , Infecções por HIV/genética , Infecções por HIV/terapia
6.
Commun Biol ; 5(1): 674, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798936

RESUMO

HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , Chlorocebus aethiops , Imunoglobulina A , Mucosa Intestinal , Células Matadoras Naturais , Linfonodos , Vírus da Imunodeficiência Símia/fisiologia
7.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380989

RESUMO

Virus-specific CD8+ T cells play a central role in HIV-1 natural controllers to maintain suppressed viremia in the absence of antiretroviral therapy. These cells display a memory program that confers them stemness properties, high survival, polyfunctionality, proliferative capacity, metabolic plasticity, and antiviral potential. The development and maintenance of such qualities by memory CD8+ T cells appear crucial to achieving natural HIV-1 control. Here, we show that targeting the signaling pathways Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) and mTORC through GSK3 inhibition to reprogram HIV-specific CD8+ T cells from noncontrollers promoted functional capacities associated with natural control of infection. Features of such reprogrammed cells included enrichment in TCF-1+ less-differentiated subsets, a superior response to antigen, enhanced survival, polyfunctionality, metabolic plasticity, less mTORC1 dependency, an improved response to γ-chain cytokines, and a stronger HIV-suppressive capacity. Thus, such CD8+ T cell reprogramming, combined with other available immunomodulators, might represent a promising strategy for adoptive cell therapy in the search for an HIV-1 cure.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD8-Positivos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Viremia
8.
EBioMedicine ; 79: 103985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429693

RESUMO

BACKGROUND: The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS: We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS: We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION: A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING: Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin ¼, the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation ¼), « Les Amis des Instituts Pasteur à Bruxelles, asbl ¼, the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Repressão Epigenética , Infecções por HIV , HIV-1 , Ubiquitina-Proteína Ligases , Latência Viral , Síndrome da Imunodeficiência Adquirida , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Decitabina/metabolismo , Infecções por HIV/genética , HIV-1/fisiologia , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética
9.
Vaccines (Basel) ; 9(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452011

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19). It emerged from China in December 2019 and rapidly spread across the globe, causing a pandemic with unprecedented impacts on public health and economy. Therefore, there is an urgent need for the development of curative treatments and vaccines. In humans, COVID-19 pathogenesis shows a wide range of symptoms, from asymptomatic to severe pneumonia. Identifying animal models of SARS-CoV-2 infection that reflect the clinical symptoms of COVID-19 is of critical importance. Nonhuman primates (NHPss) correspond to relevant models to assess vaccine and antiviral effectiveness. This review discusses the use of NHPs as models for COVID-19 research, with focus on the pathogenesis of SARS-CoV-2 infection, drug discovery and pre-clinical evaluation of vaccine candidates.

10.
Front Immunol ; 12: 695148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220857

RESUMO

CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.


Assuntos
Linfócitos B/virologia , Linfócitos T CD4-Positivos/virologia , Tecido Linfoide/virologia , Receptores de IgG/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Replicação Viral , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Jejuno/imunologia , Jejuno/metabolismo , Jejuno/virologia , Ativação Linfocitária , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Macaca fascicularis , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Baço/imunologia , Baço/metabolismo , Baço/virologia , Carga Viral
11.
J Virol ; 95(14): e0001621, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952636

RESUMO

HIV-1 Gag p24 has long been identified as an informative biomarker of HIV replication, disease progression, and therapeutic efficacy, but the lower sensitivity of immunoassays in comparison to molecular tests and the interference with antibodies in chronic HIV infection limit its application for clinical monitoring. The development of ultrasensitive protein detection technologies may help in overcoming these limitations. Here, we evaluated whether immune complex dissociation combined with ultrasensitive digital enzyme-linked immunosorbent assay (ELISA) single-molecule array (Simoa) technology could be used to quantify p24 in plasma samples from people with HIV-1 infection. We found that, among different immune complex dissociation methods, only acid-mediated dissociation was compatible with ultrasensitive p24 quantification by digital ELISA, strongly enhancing p24 detection at different stages of HIV-1 infection. We show that ultrasensitive p24 levels correlated positively with plasma HIV RNA and HIV DNA and negatively with CD4-positive (CD4+) T cells in the samples from people with primary and chronic HIV-1 infection. In addition, p24 levels also correlated with plasma D-dimers and interferon alpha (IFN-α) levels. p24 levels sharply decreased to undetectable levels after initiation of combined antiretroviral treatment (cART). However, we identified a group of people who, 48 weeks after cART initiation, had detectable p24 levels despite most having undetectable viral loads. These people had different virological and immunological baseline characteristics compared with people who had undetectable p24 after cART. These results demonstrate that ultrasensitive p24 analysis provides an efficient and robust means to monitor p24 antigen in plasma samples from people with HIV-1 infection, including during antiretroviral treatment, and may provide complementary information to other commonly used biomarkers. IMPORTANCE The introduction of combined antiretroviral treatment has transformed HIV-1 infection into a manageable condition. In this context, there is a need for additional biomarkers to monitor HIV-1 residual disease or the outcome of new interventions, such as in the case of HIV cure strategies. The p24 antigen has a long half-life outside viral particles, and it is, therefore, a very promising marker to monitor episodes of viral replication or transient activation of the viral reservoir. However, the formation of immune complexes with anti-p24 antibodies makes its quantification difficult beyond acute HIV-1 infection. We show here that, upon immune complex dissociation, new technologies allow the ultrasensitive p24 quantification in plasma samples throughout HIV-1 infection at levels close to those of viral RNA and DNA determinations. Our results further indicate that ultrasensitive p24 quantification may have added value when used in combination with other classic clinical biomarkers.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteína do Núcleo p24 do HIV/sangue , Infecções por HIV/virologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Complexo Antígeno-Anticorpo , Terapia Antirretroviral de Alta Atividade , Biomarcadores/sangue , Doença Crônica , Estudos de Coortes , Feminino , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Sensibilidade e Especificidade
12.
iScience ; 24(4): 102314, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870131

RESUMO

Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c +CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c +CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c +CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c +CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c +CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c +CD8+ T cells in intestinal inflammation during SIV/HIV infections.

13.
Nat Commun ; 12(1): 1282, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627642

RESUMO

Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.


Assuntos
Células Matadoras Naturais/metabolismo , Linfonodos/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Algoritmos , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Chlorocebus aethiops , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Células K562 , Células Matadoras Naturais/citologia , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Macaca , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Transcriptoma/genética
14.
Clin Infect Dis ; 72(9): e256-e264, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32712664

RESUMO

BACKGROUND: Human genetic variation-mostly in the human leukocyte antigen (HLA) and C-C chemokine receptor type 5 (CCR5) regions-explains 25% of the variability in progression of human immunodeficiency virus (HIV) infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of cytosine-guanine (CpG) islands might modulate progression of HIV infection. METHODS: In total, 85 samples were analyzed: 21 elite controllers (EC), 21 subjects with HIV before combination antiretroviral therapy (cART) (viremic, 93 325 human immunodeficiency virus type 1 [HIV-1] RNA copies/mL) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/mL), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485 577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, messenger RNA (mRNA) expression, and plasma protein levels in 5 individuals before and after initiation of cART. RESULTS: We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic versus HIVneg, 162 CpG sites (55 gene promoters) in viremic versus cART, 441 CpG sites (163 gene promoters) in viremic versus EC, but none in EC versus HIVneg. The TNF promoter region was hypermethylated in viremic versus HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. CONCLUSIONS: Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Progressão da Doença , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Viremia
15.
Cell Rep ; 32(12): 108174, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966788

RESUMO

Highly efficient CD8+ T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8+ T cell responses. Our results show that SIV-specific CD8+ T cells emerge during primary infection in all animals. The ability of CD8+ T cells to suppress SIV is suboptimal in the acute phase but increases progressively in controller macaques before the establishment of sustained low-level viremia. Controller macaques develop optimal memory-like SIV-specific CD8+ T cells early after infection. In contrast, a persistently skewed differentiation phenotype characterizes memory SIV-specific CD8+ T cells in non-controller macaques. Accordingly, the phenotype of SIV-specific CD8+ T cells defined early after infection appears to favor the development of protective immunity in controllers, whereas SIV-specific CD8+ T cells in non-controllers fail to gain antiviral potency, feasibly as a consequence of early defects imprinted in the memory pool.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Doença Crônica , Haplótipos/genética , Memória Imunológica , Linfonodos/patologia , Contagem de Linfócitos , Macaca fascicularis , Complexo Principal de Histocompatibilidade , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Viremia
16.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554924

RESUMO

Type I IFN (IFN-I) production by plasmacytoid DCs (pDCs) occurs during acute HIV-1 infection in response to TLR7 stimulation, but the role of pDC-derived IFN-I in controlling or promoting HIV-1 infection is ambiguous. We report here a sex-biased interferogenic phenotype for a frequent single-nucleotide polymorphism of human TLR7, rs179008, displaying an impact on key parameters of acute HIV-1 infection. We show allele rs179008 T to determine lower TLR7 protein abundance in cells from women, specifically - likely by diminishing TLR7 mRNA translation efficiency through codon usage. The hypomorphic TLR7 phenotype is mirrored by decreased TLR7-driven IFN-I production by female pDCs. Among women from the French ANRS PRIMO cohort of acute HIV-1 patients, carriage of allele rs179008 T associated with lower viremia, cell-associated HIV-1 DNA, and CXCL10 (IP-10) plasma concentrations. RNA viral load was decreased by 0.85 log10 (95% CI, -1.51 to -0.18) among T/T homozygotes, who also exhibited a lower frequency of acute symptoms. TLR7 emerges as an important control locus for acute HIV-1 viremia, and the clinical phenotype for allele rs179008 T, carried by 30%-50% of European women, supports a beneficial effect of toning down TLR7-driven IFN-I production by pDCs during acute HIV-1 infection.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , Interferon-alfa/metabolismo , Receptor 7 Toll-Like/metabolismo , Viremia/virologia , Adulto , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Feminino , Infecções por HIV/imunologia , HIV-1/metabolismo , Humanos , Pessoa de Meia-Idade , Receptor 7 Toll-Like/efeitos dos fármacos
17.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350074

RESUMO

HIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of antiapoptotic clone 11 (AAC-11), an antiapoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation, and metabolism genes and was correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here, we observed that these peptides also blocked HIV-1 infection by inducing the death of HIV-1-susceptible primary CD4+ T cells across all T cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that the AAC-11 survival pathway is potentially involved in the survival of HIV-1-infectible cells and provide proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication.IMPORTANCE Although antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate cells already carrying integrated proviruses. In the search for an HIV cure, the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from antiapoptotic clone 11 (AAC-11), whose expression levels correlated with susceptibility to HIV-1 infection of CD4+ T cells, induced cytotoxicity in CD4+ T cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Memória Imunológica/efeitos dos fármacos , Proteínas Nucleares/farmacologia , Peptídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/química , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Suscetibilidade a Doenças , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Proteínas Nucleares/química , Peptídeos/química , Domínios Proteicos , Replicação Viral/imunologia
18.
Sci Transl Med ; 12(542)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376772

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only medical intervention that has led to an HIV cure. Whereas the HIV reservoir sharply decreases after allo-HSCT, the dynamics of the T cell reconstitution has not been comprehensively described. We analyzed the activation and differentiation of CD4+ and CD8+ T cells, and the breadth and quality of HIV- and CMV-specific CD8+ T cell responses in 16 patients with HIV who underwent allo-HSCT (including five individuals who received cells from CCR5Δ32/Δ32 donors) to treat their underlying hematological malignancy and who remained on antiretroviral therapy (ART). We found that reconstitution of the T cell compartment after allo-HSCT was slow and heterogeneous with an initial expansion of activated CD4+ T cells that preceded the expansion of CD8+ T cells. Although HIV-specific CD8+ T cells disappeared immediately after allo-HSCT, weak HIV-specific CD8+ T cell responses were detectable several weeks after transplant and could still be detected at the time of full T cell chimerism, indicating that de novo priming, and hence antigen exposure, occurred during the time of T cell expansion. These HIV-specific T cells had limited functionality compared with CMV-specific CD8+ T cells and persisted years after allo-HSCT. In conclusion, immune reconstitution was slow, heterogeneous, and incomplete and coincided with de novo detection of weak HIV-specific T cell responses. The initial short phase of high T cell activation, in which HIV antigens were present, may constitute a window of vulnerability for the reseeding of viral reservoirs, emphasizing the importance of maintaining ART directly after allo-HSCT.


Assuntos
HIV-1 , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Linfócitos T CD8-Positivos , Humanos , Transplante Homólogo
19.
Cell Metab ; 29(3): 611-626.e5, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30581119

RESUMO

HIV persists in long-lived infected cells that are not affected by antiretroviral treatment. These HIV reservoirs are mainly located in CD4+ T cells, but their distribution is variable in the different subsets. Susceptibility to HIV-1 increases with CD4+ T cell differentiation. We evaluated whether the metabolic programming that supports the differentiation and function of CD4+ T cells affected their susceptibility to HIV-1. We found that differences in HIV-1 susceptibility between naive and more differentiated subsets were associated with the metabolic activity of the cells. Indeed, HIV-1 selectively infected CD4+ T cells with high oxidative phosphorylation and glycolysis, independent of their activation phenotype. Moreover, partial inhibition of glycolysis (1) impaired HIV-1 infection in vitro in all CD4+ T cell subsets, (2) decreased the viability of preinfected cells, and (3) precluded HIV-1 amplification in cells from HIV-infected individuals. Our results elucidate the link between cell metabolism and HIV-1 infection and identify a vulnerability in tackling HIV reservoirs.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular , Células Cultivadas , Glicólise/imunologia , Infecções por HIV/patologia , HIV-1 , Humanos , Ativação Linfocitária , Fosforilação Oxidativa , Subpopulações de Linfócitos T/patologia
20.
Nat Metab ; 1(7): 704-716, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-32694646

RESUMO

Spontaneous control of human immunodeficiency virus (HIV) is generally associated with an enhanced capacity of CD8+ T cells to eliminate infected CD4+ T cells, but the molecular characteristics of these highly functional CD8+ T cells are largely unknown. In the present study, using single-cell analysis, it was shown that HIV-specific, central memory CD8+ T cells from spontaneous HIV controllers (HICs) and antiretrovirally treated non-controllers have opposing transcriptomic profiles. Genes linked to effector functions and survival are upregulated in cells from HICs. In contrast, genes associated with activation, exhaustion and glycolysis are upregulated in cells from non-controllers. It was shown that HIV-specific CD8+ T cells from non-controllers are largely glucose dependent, whereas those from HICs have more diverse metabolic resources that enhance both their survival potential and their capacity to develop anti-HIV effector functions. The functional efficiency of the HIV-specific CD8+ T cell response in HICs is thus engraved in their memory population and related to their metabolic programme. Metabolic reprogramming in vitro through interleukin-15 treatment abrogated the glucose dependency and enhanced the antiviral potency of HIV-specific CD8+ T cells from non-controllers.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...