Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 149: 107485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824700

RESUMO

There is a continuous and pressing need to establish new brain-penetrant bioactive compounds with anti-cancer properties. To this end, a new series of 4'-((4-substituted-4,5-dihydro-1H-1,2,3-triazol-1-yl)methyl)-[1,1'-biphenyl]-2-carbonitrile (OTBN-1,2,3-triazole) derivatives were synthesized by click chemistry. The series of bioactive compounds were designed and synthesized from diverse alkynes and N3-OTBN, using copper (II) acetate monohydrate in aqueous dimethylformamide at room temperature. Besides being highly cost-effective and significantly reducing synthesis, the reaction yielded 91-98 % of the target products without the need of any additional steps or chromatographic techniques. Two analogues exhibit promising anti-cancer biological activities. Analogue 4l shows highly specific cytostatic activity against lung cancer cells, while analogue 4k exhibits pan-cancer anti-growth activity. A kinase screen suggests compound 4k has single-digit micromolar activity against kinase STK33. High STK33 RNA expression correlates strongly with poorer patient outcomes in both adult and pediatric glioma. Compound 4k potently inhibits cell proliferation, invasion, and 3D neurosphere formation in primary patient-derived glioma cell lines. The observed anti-cancer activity is enhanced in combination with specific clinically relevant small molecule inhibitors. Herein we establish a novel biochemical kinase inhibitory function for click-chemistry-derived OTBN-1,2,3-triazole analogues and further report their anti-cancer activity in vitro for the first time.


Assuntos
Antineoplásicos , Proliferação de Células , Química Click , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Triazóis , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Estrutura Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/síntese química
2.
Chem Commun (Camb) ; 60(55): 7093-7096, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38899811

RESUMO

In this communication, we explored the synthesis of novel alkoxy-functionalised dihydropyrimido[4,5-b]quinolinones using a microwave-assisted multicomponent reaction. All the synthesized molecules were screened for anti-proliferative and anti-invasive activity against glioblastoma cells. 5c shows the most potent anti-proliferative activity with a half maximal effective concentration of less than 3 µM against primary patient-derived glioblastoma cells. 5c effectively inhibited invasion and tumor growth of 3D primary glioma cultures in a basement membrane matrix. This suggests that the novel compounds could inhibit both the proliferation and invasive spread of glioma and they were selected for further study.


Assuntos
Antineoplásicos , Proliferação de Células , Quinolonas , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Estrutura Molecular , Relação Estrutura-Atividade
3.
RSC Adv ; 14(13): 9300-9313, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505382

RESUMO

Owing to the massive importance of dihydropyrimidine (DHPMs) scaffolds in the pharmaceutical industry and other areas, we developed an effective and sustainable one-pot reaction protocol for the synthesis of (R/S)-2-thioxo-DHPM-5-carboxanilides via the Biginelli-type cyclo-condensation reaction of aryl aldehydes, thiourea and various acetoacetanilide derivatives in ethanol at 100 °C. In this protocol, taurine was used as a green and reusable bio-organic catalyst. Twenty-three novel derivatives of (R/S)-TDHPM-5-carboxanilides and their structures were confirmed by various spectroscopy techniques. The aforementioned compounds were synthesized via the formation of one asymmetric centre, one new C-C bond, and two new C-N bonds in the final product. All the newly synthesized compounds were obtained in their racemic form with up to 99% yield. In addition, the separation of the racemic mixture of all the newly synthesized compounds was carried out by chiral HPLC (Prep LC), which provided up to 99.99% purity. The absolute configuration of all the enantiomerically pure isomers was determined using a circular dichroism study and validated by a computational approach. With up to 99% yield of 4d, this one-pot synthetic approach can also be useful for large-scale industrial production. One of the separated isomers (4R)-(+)-4S developed as a single crystal, and it was found that this crystal structure was orthorhombic.

4.
Arch Pharm (Weinheim) ; 357(4): e2300673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247229

RESUMO

In the face of escalating challenges of microbial resistance strains, this study describes the design and synthesis of 5-({1-[(1H-1,2,3-triazol-4-yl)methyl]-1H-indol-3-yl}methylene)thiazolidine-2,4-dione derivatives, which have demonstrated significant antimicrobial properties. Compared with the minimum inhibitory concentrations (MIC) values of ciprofloxacin on the respective strains, compounds 5a, 5d, 5g, 5l, and 5m exhibited potent antibacterial activity with MIC values ranging from 16 to 25 µM. Almost all the synthesized compounds showed lower MIC compared to standards against vancomycin-resistant enterococcus and methicillin-resistant Staphylococcus aureus strains. Additionally, the majority of the synthesized compounds demonstrated remarkable antifungal activity, against Candida albicans and Aspergillus niger, as compared to nystatin, griseofulvin, and fluconazole. Furthermore, the majority of compounds exhibited notable inhibitory effects against the Plasmodium falciparum strain, having IC50 values ranging from 1.31 to 2.79 µM as compared to standard quinine (2.71 µM). Cytotoxicity evaluation of compounds 5a-q on SHSY-5Y cells at up to 100 µg/mL showed no adverse effects. Comparison with control groups highlights their noncytotoxic characteristics. Molecular docking confirmed compound binding to target active sites, with stable protein-ligand complexes displaying drug-like molecules. Molecular dynamics simulations revealed dynamic stability and interactions. Rigorous tests and molecular modeling unveil the effectiveness of the compounds against drug-resistant microbes, providing hope for new antimicrobial compounds with potential safety.


Assuntos
Antimaláricos , Staphylococcus aureus Resistente à Meticilina , Tiazolidinedionas , Antibacterianos/química , Antimaláricos/farmacologia , Triazóis/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Indóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular
5.
RSC Adv ; 13(35): 24466-24473, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37593670

RESUMO

In this study, we effectively developed a catalyst-free multicomponent synthesis of 5-((2-aminothiazol-5-yl)(phenyl)methyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives employing 2-aminothiazole, N',N'-dimethyl barbituric acid/barbituric acid and different aldehydes at 80 °C in an aqueous ethanol medium (1 : 1) using group-assisted purification (GAP) chemistry. The essential characteristics of this methodology include superior green credential parameters, metal-free multicomponent synthesis, faster reaction times, greater product yields, simple product purification without column chromatography and higher product yields. All of the synthesized compounds were analyzed against the HepG2 cell line. Compounds 4j and 4k shows good anti-proliferative effects on HepG2 cells. Furthermore, the ABTS and DPPH scavenging assays were used to determine the antioxidant activity of all compounds (4a-r). In both ABTS and DPPH radical scavenging assays, compounds 4e, 4i, 4j, 4o and 4r exhibit excellent potency compared to the standard ascorbic acid.

6.
ACS Omega ; 8(2): 1759-1816, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687108

RESUMO

The pyranopyrimidine core is a key precursor for medicinal and pharmaceutical industries due to its broader synthetic applications as well as its bioavailability. Among its four possible isomers, we found that 5H-pyrano[2,3-d]pyrimidine scaffolds have a wide range of applicability, and in recent years, they have been intensively investigated, but the development of the main core is found to be more challenging due to its structural existence. In this review article, we cover all of the synthetic pathways that are employed for the development of substituted 4-aryl-octahydropyrano/hexahydrofuro[2,3-d]pyrimidin-2-one (thiones) and 5-aryl-substituted pyrano[2,3-d]pyrimidindione (2-thiones) derivatives through a one-pot multicomponent reaction using diversified hybrid catalysts such as organocatalysts, metal catalysts, ionic liquid catalysts, nanocatalysts, green solvents, catalyst-/solvent-free conditions, and miscellaneous catalysts as well as the mechanism and recyclability of the catalysts. This review mainly focuses on the application of hybrid catalysts (from 1992 to 2022) for the synthesis of 5H-pyrano[2,3-d]pyrimidine scaffolds. This review will definitely attract the world's leading researchers to utilize broader catalytic applications for the development of lead molecules.

7.
ACS Omega ; 8(1): 444-456, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643529

RESUMO

An efficient, regioselective, and environmentally benign approach was established using the multicomponent reaction-based synthesis of novel antioxidant spiroquinoline derivatives such as spiro[dioxolo[4,5-g]quinoline], spiro[dioxino[2,3-g]quinoline], and spiro[pyrazolo[4,3-f]quinoline] by reaction of aryl aldehyde, Meldrum's acid, and amine derivatives under an additive-free reaction in aqueous ethanol. Here, two asymmetric carbon centers, three new C-C bonds, and one C-N bond are developed in the final motif. This synthetic methodology offers excellent yields with an easy workup procedure, high diastereoselectivity [d.r. >50:1 (cis/trans)], admirable atom economy, and low E-factor values. Synthesized spiro compounds were investigated for their in vitro antioxidant activity by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. In the ABTS radical scavenging assay, compounds 4d, 4f, and 4l exhibit excellent potency, and in the DPPH radical scavenging assay, compounds 4a, 4d, 4f, and 4g, exhibit excellent potency.

8.
RSC Adv ; 12(47): 30404-30415, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337956

RESUMO

In this study, we demonstrate a simple, highly efficient, rapid and convenient series of 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7H)-ones 4a-v. Microwave irradiation facilitates the one-pot multicomponent reaction of different aromatic aldehydes, 6-amino-2,4-dimethoxypyrimidine and dimedone using glacial acetic acid. Metal-free multicomponent synthesis, shorter reaction time, higher product yield, easy product purification without column chromatography and outstanding green credential parameters are the key features of this protocol. We analysed 4a-v against six human tumour cell lines for antiproliferative activity. 4h, 4o, 4q and 4v show good antiproliferative activity with a good in silico ADMET profile. Furthermore, 4h, 4o, 4q and 4v also show drug-likeness properties by obeying drug-like filters.

9.
ACS Omega ; 7(42): 36945-36987, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312377

RESUMO

1,2,3-Triazole scaffolds are not obtained in nature, but they are still intensely investigated by synthetic chemists in various fields due to their excellent properties and green synthetic routes. This review will provide a library of all synthetic routes used in the past 21 years to synthesize 1,2,3-triazoles and their derivatives using various metal catalysts (such as Cu, Ni, Ru, Ir, Rh, Pd, Au, Ag, Zn, and Sm), organocatalysts, metal-free as well as solvent- and catalyst-free neat syntheses, along with their mechanistic cycles, recyclability studies, solvent systems, and reaction condition effects on regioselectivity. Constant developments indicate that 1,2,3-triazoles will help lead to future organic synthesis and are useful for creating molecular libraries of various functionalized 1,2,3-triazoles.

10.
RSC Adv ; 12(37): 23889-23897, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36093229

RESUMO

We report a one-pot two-step synthesis of a bioactive 6-amino-2-pyridone-3,5-dicarbonitrile derivative using natural product catalysts betaine and guanidine carbonate. Anti-cancer bioactivity was observed in specific molecules within the library of 16 derivatives. Out of the compounds, 5o had the most potent anti-cancer activity against glioblastoma cells and was selected for further study. Compound 5o showed anti-cancer properties against liver, breast, lung cancers as well as primary patient-derived glioblastoma cell lines. Furthermore, 5o in combination with specific clinically relevant small molecule inhibitors induced enhanced cytotoxicity in glioblastoma cells. Through our current work, we establish a promising 6-amino-2-pyridone-3,5-dicarbonitrile based lead compound with anti-cancer activity either on its own or in combination with specific clinically relevant small molecule kinase and proteasome inhibitors.

11.
Ann Med ; 54(1): 2549-2561, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36120909

RESUMO

A series of N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles was synthesised and screened for their potential to inhibit kinases and exhibit anticancer activity against primary patient-derived glioblastoma 2D cells and 3D neurospheres. A collection of 10 compounds was evaluated against glioma cell lines, with compound 4j exhibiting promising glioma growth inhibitory properties. Compound 4j was screened against 139 purified kinases and exhibited low micromolar activity against kinase AKT2/PKBß. AKT signalling is one of the main oncogenic pathways in glioma and is often targeted for novel therapeutics. Indeed, AKT2 levels correlated with glioma malignancy and poorer patient survival. Compound 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells and exhibited potent EC50 against glioblastoma cell lines. Although exhibiting potency against glioma cells, 4j exhibited significantly less cytotoxicity against non-cancerous cells even at fourfold-fivefold the concentration. Herein we establish a novel biochemical kinase inhibitory function for N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles and further report their anti-glioma activity in vitro for the first time.KEY MESSAGEAnti-glioma pyrano[2,3-c]pyrazole 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells. 4j also displayed PKBß/AKT2 inhibitory activity. 4j is nontoxic towards non-cancerous cells.


Assuntos
Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia
12.
RSC Adv ; 12(29): 18806-18820, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873341

RESUMO

Herein, acetic acid mediated multicomponent synthesis of novel 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7H)-one (2,4-dimethoxy-THPQs) was reported. Single-crystal XRD analysis of four newly developed crystals of 2,4-dimethoxy-THPQs and their DFT study were also reported. The structure of all molecules was optimized using DFT B3LYP/6-31G(d) level and compared with the corresponding single-crystal XRD data. As a result, the theoretical and experimental geometrical parameters (bond lengths and bond angles) were found to be in good agreement. Frontier molecular orbital (FMO) and molecule electrostatic potential (MEP) analyses were used to investigate the physicochemical properties and relative reactivity of 2,4-dimethoxy-THPQs. The formation of strong C-H⋯O and N-H⋯O interaction was investigated by Hirshfeld analysis. Furthermore, electronic charge density concentration in 2,4-dimethoxy-THPQs was analysed by the Mulliken atomic charges which helps to predict the ability of 2,4-dimethoxy-THPQs to bind in the receptor. The molecular docking of the crystal structure of 2,4-dimethoxy-THPQs in the main protease (Mpro) of SARS-CoV-2 suggested that all four 2,4-dimethoxy-THPQs efficiently docked in Mpro. Furthermore, 2,4-dimethoxy-THPQs with a 3-chloro substitution in the phenyl ring have the highest binding affinity because of the additional formation of halogen bonds and highest dipole moment.

13.
Biosci Rep ; 42(2)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35088066

RESUMO

Proteasome-addicted neoplastic malignancies present a considerable refractory and relapsed phenotype with patients exhibiting drug resistance and high mortality rates. To counter this global problem, novel proteasome-based therapies are being developed. In the current study, we extensively characterize TIR-199, a syrbactin-class proteasome inhibitor derived from a plant virulence factor of bacterium Pseudomonas syringae pv syringae. We report that TIR-199 is a potent constitutive and immunoproteasome inhibitor, capable of inducing cell death in multiple myeloma, triple-negative breast cancer, (TNBC) and non-small cell lung cancer lines. TIR-199 also effectively inhibits the proteasome in primary myeloma cells of patients, and bypasses the PSMB5 A49T+A50V bortezomib-resistant mutant. TIR-199 treatment leads to accumulation of canonical proteasome substrates in cells, it is specific, and does not inhibit 50 other enzymes tested in vitro. The drug exhibits synergistic cytotoxicity in combination with proteasome-activating kinase DYRK2 inhibitor LDN192960. Furthermore, low-doses of TIR-199 exhibits in vivo activity by delaying myeloma-mediated bone degeneration in a mouse xenograft model. Together, our data indicates that proteasome inhibitor TIR-199 could indeed be a promising next-generation drug within the repertoire of proteasome-based therapeutics.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mieloma Múltiplo , Amidas , Animais , Antineoplásicos/farmacologia , Azóis , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia
14.
Arch Pharm (Weinheim) ; 354(6): e2000466, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33586256

RESUMO

In this study, we report on antiproliferative benzyloxy dihydropyrimidinones (DHPMs) produced by the Biginelli reaction of benzyloxy benzaldehyde, urea, and diverse 1,3-diones. The reaction was catalyzed by lanthanum triflate and completed within 1-1.5 h, with 74-97% yield. The antiproliferative assay was carried out for all synthesized dihydropyrimidinones against six human solid tumor cell lines. Six compounds showed good antiproliferative activity with GI50 values below 5 µM. Among all the synthesized compounds, the most potent derivative showed good antiproliferative activity against all cell lines with GI50 values in the range of 1.1-3.1 µM. These DHPMs comply with druglikeness. Furthermore, ADMET prediction and the effect of P-glycoprotein on the antiproliferative activity were also studied. Overall, our method allows eco-friendly access to benzyloxy DHPMs as potential anticancer drugs.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Pirimidinonas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lantânio/química , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/farmacologia , Relação Estrutura-Atividade , Ureia/química
15.
RSC Adv ; 10(33): 19600-19609, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35515429

RESUMO

A versatile and substrate oriented multicomponent reaction for the syntheses of novel highly diastereoselective tetrahydro-1'H-spiro[pyrazolo[4,3-f]quinoline-8,5'-pyrimidine]-2',4',6'(3'H)-triones (d.r. up to 20 : 1 (syn : anti)) and tetrahydro-8H-pyrazolo[4,3-f]pyrimido[4,5-b]quinoline-8,10(9H)-diones via formation of selective multiple C-C bonds under identical reaction conditions (viz. ethanol as a reaction medium and deep eutectic mixture as a catalyst) is demonstrated. Both approaches involve mild reaction conditions, use of non-hazardous solvents, and facilitate good to excellent reaction yields of the target compounds.

16.
RSC Adv ; 10(58): 35499-35504, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515671

RESUMO

Green synthesis of pyrazolo[3,4-b]quinolinones was designed using bioproduct pyridine-2-carboxylic acid (P2CA) as a green and efficient catalyst. The multi-component reaction of aldehydes, 1,3-cyclodiones and 5-amino-1-phenyl-pyrazoles regioselectively produced pyrazolo[3,4-b]quinolinones in excellent yield (84-98%). Recyclization of the catalyst was also investigated. The electronic effect of the various substituents in aromatic rings indicated that the reaction proceeded through the carbocation intermediate. This newly designed protocol very quickly constructed products conventionally under milder conditions.

17.
Bioorg Chem ; 86: 137-150, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690337

RESUMO

Herein our team explored a promising synthetic trail to Functionalized pyrazolodihydropyridine core using hydroxyl alkyl ammonium ionic liquid via one-pot fusion of 3-methyl-1-phenyl-1H-pyrazole-5-amine, different heterocyclic aldehydes and 1, 3-Cyclic diones. The aimed compounds were obtained by Domino-Knoevenagel condensation and Michael addition followed by cyclization. The reaction transformation involves the formation of two CC and one CN bond formation. The perspective of the present work is selectively approached to Functionalized pyrazolodihydropyridine core excluding other potential parallel reactions under environmentally benign reaction condition. The present protocol show features such as the low E-factor, ambiphilic behavior of ionic liquid during reaction transformation, scale-up to a multigram scale, reusability of the ionic liquid, mild reaction condition, and produce water as a byproduct. All newly derived compounds were evaluated for their in vitro biological activities. In preliminary biological studies compound, 4c showed better potency than the standard drug ampicillin against Gram-negative bacteria (E. coli); the compound 4i exhibited outstanding activity against S. aeruginosa which is far better than ampicillin, chloramphenicol, and ciprofloxacin. The compound 4m was found more potent against C. albicans, than that of griseofulvin and show equipotency to nystatin whereas, in preliminary antitubercular screening, compound 4o was exhibited more potency than rifampicin. Noteworthy compounds 4f and 4i were found most active in antiproliferative screening.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Di-Hidropiridinas/farmacologia , Pirazóis/farmacologia , Compostos de Amônio/química , Compostos de Amônio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Candida albicans/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Radical Hidroxila/química , Radical Hidroxila/farmacologia , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
18.
RSC Adv ; 9(49): 28886-28893, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529659

RESUMO

In this study, we successfully explored the effect of steric hindrance on the one-pot reaction of different aryl aldehydes with malononitrile and N-substituted 2-cyanoacetamide in the presence of piperidinium acetate as the catalyst. It involved the Knoevenagel condensation of the aldehyde and malononitrile to produce arylidene malononitrile as an intermediate, which was further treated with N-substituted 2-cyanoacetamide to give 6-amino-2-pyridone-3,5-dicarbonitrile derivatives when the less steric bulky group was involved. High steric hindrance changed the earlier reaction route and gave N-substituted 2-cyanoacrylamides via a slower route.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...