Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126447

RESUMO

Around 1.5 million mortality cases due to fungal infection are reported annually, posing a massive threat to global health. However, the effectiveness of current antifungal therapies in the treatment of invasive fungal infections is limited. Repurposing existing antifungal drugs is an advisable alternative approach for enhancing their effectiveness. This study evaluated the antifungal efficacy of the antiviral drug vidarabine against Candida albicans ATCC 90028. Antifungal susceptibility testing was performed by microbroth dilution assay and further processed to find the minimum fungicidal concentration. Investigation on probable mode of vidarabine action against C. albicans was assessed by using the ergosterol reduction assay, reactive oxygen species (ROS) accumulation, nuclear condensation, and apoptosis assay. Results revealed that C. albicans was susceptible to vidarabine action and exhibited minimum inhibitory concentration at 150 µg/ml. At a concentration of 300 µg/ml, vidarabine had fungicidal activity against C. albicans. 300 µg/ml vidarabine-treated C. albicans cells demonstrated 91% reduced ergosterol content. Annexin/FITC/PI assay showed that vidarabine (150 µg/ml) had increased late apoptotic cells up to 31%. As per the fractional inhibitory concentration index, vidarabine had synergistic activity with fluconazole and caspofungin against this fungus. The mechanism underlying fungicidal action of vidarabine was evaluated at the intracellular level, and probably because of increased nuclear condensation, enhanced ROS generation, and cell cycle arrest. In conclusion, this data is the first to report that vidarabine has potential to be used as a repurposed antifungal agent alone or in combination with standard antifungal drugs, and could be a quick and safe addition to existing therapies for treating fungal infections.

2.
Phytother Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101575

RESUMO

Fungal infections are becoming a severe threat to the security of global public health due to the extensive use of antibiotic medications and the rise in immune-deficient patients globally. Additionally, there is an increase in the development of fungus resistance to available antifungal medications. It is necessary to focus on the development of new antifungal medications in order to address these problems. The wide range of chemical structures, low cost, high availability, high antimicrobial action, and lack of adverse effects are the characteristics of plant secondary metabolites. In order to find and develop new antifungal medications, plant secondary metabolites like glucosinolate (GSL) derivatives are crucial sources of information. These natural compounds are enzymatically transformed into isothiocyanates (ITCs), nitriles, epithionitriles, oxazolidin-2-thion, and thiocyanate when they get mechanically damaged. The current review offers a thorough understanding of how isothiocyanates affect fungi with detailed mechanism. Along with this antifungal activity of nitriles, epithionitriles, oxazolidin-2-thion, and thiocyanate are mentioned. The review summarizes our present understanding of the following subjects: role of isothiocyanate by inhibiting aflatoxin biosynthesis, effect of isothiocyanate on transcriptomes, isothiocyanate targets cell membrane, role of isothiocyanate in efflux, and the role of isothiocyanate in synergistic activity. Antifungal activity of nitrile, epithionitrile, oxazolidine-2-thion, and thiocyanate is mentioned. Cytotoxicity study and clinical trials data were also added. More extensive studies will be needed in this field to assess safety concerns and clinical efficacies of GSL derivatives.

3.
Curr Microbiol ; 81(7): 213, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847863

RESUMO

The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Mefloquina , Fatores de Virulência , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/crescimento & desenvolvimento , Animais , Mefloquina/farmacologia , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Braz J Microbiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789908

RESUMO

Candida albicans is a polymorphic human fungal pathogen and the prime etiological agent responsible for candidiasis. The main two aspects of C. albicans virulence that have been suggested are yeast-to-hyphal (Y-H) morphological transitions and biofilm development. Anti-fungal agents targeting these virulence attributes enhances the antifungal drug development process. Repositioning with other non-fungal drugs offered a one of the new strategies and a potential alternative option to counter the urgent need for antifungal drug development. In the current study, an antiviral drug ganciclovir was screened as an antifungal agent against ATCC 90028, 10231 and clinical isolate (C1). Ganciclovir at 0.5 mg/ml concentration reduced 50% hyphal development on a silicon-based urinary catheter and was visualized using scanning electron microscopy. Ganciclovir reduced ergosterol biosynthesis in both strains and C1 isolate of C. albicans in a concentration-dependent manner. Additionally, a gene expression profile study showed that ganciclovir treatment resulted in upregulation of hyphal-specific repressors MIG1, TUP1, and NRG1 in C. albicans. Additionally, an in vivo study on the Bombyx mori silkworm model further evidenced the virulence inhibitory ability of ganciclovir (0.5 mg/ml) against C. albicans. This is the first report that explore the novel anti-morphogenic activities of ganciclovir against the pathogenic C. albicans strains, along with clinical isolates. Further, ganciclovir may be considered for therapeutic purpose after combinations with standard antifungal agents.

5.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727840

RESUMO

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Membrana Celular , Isotiocianatos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Biofilmes/efeitos dos fármacos , Antifúngicos/farmacologia , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Ciclo Celular/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Ergosterol/metabolismo
6.
J Microbiol ; 62(5): 381-391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587590

RESUMO

Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5 mg/ml concentration. The minimum inhibitory concentrations (MIC50) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2 mg/ml and 4 mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Candidíase , Hidroxicloroquina , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Camundongos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Hidroxicloroquina/farmacologia , Ergosterol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antimaláricos/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Curr Microbiol ; 81(1): 29, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051343

RESUMO

In the recent years, occurrence of candidiasis has increased drastically which leads to significant mortality and morbidity mainly in immune compromised patients. Glucosinolate (GLS) derivatives are reported to have antifungal activities. Ethyl isothiocyanate (EITC) and its antifungal activity and mechanism of action is still unclear against Candida albicans. The present work was designed to get a mechanistic insight in to the anti-Candida efficacy of EITC through in vitro and in vivo studies. EITC inhibited C. albicans planktonic growth at 0.5 mg/ml and virulence factors like yeast to hyphal form morphogenesis (0.0312 mg/ml), adhesion to polystyrene surface (0.0312 mg/ml) and biofilm formation (developing biofilm at 2 mg/ml and mature biofilm at 0.5 mg/ml) effectively. EITC blocked ergosterol biosynthesis and arrested C. albicans cells at S-phase. EITC caused ROS-dependent cellular death and nuclear or DNA fragmentation. EITC at 0.0312 mg/ml concentration regulated the expression of genes involved in the signal transduction pathway and inhibited yeast to hyphal form morphogenesis by upregulating TUP1, MIG1, and NRG1 by 3.10, 5.84 and 2.64-fold, respectively and downregulating PDE2 and CEK1 genes by 15.38 and 2.10-fold, respectively. EITC has showed haemolytic activity at 0.5 mg/ml concentration. In vivo study in silk worm model showed that EITC has toxicity to C. albicans at 0.5 mg/ml concentration. Thus, from present study we conclude that EITC has antifungal activity and to reduce its MIC and toxicity, combination study with other antifungal drugs need to be done. EITC and its combinations might be used as alternative therapeutics for the prevention and treatment of C. albicans infections.


Assuntos
Candida albicans , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Biofilmes
8.
Future Microbiol ; 18: 673-679, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37522244

RESUMO

Cruciferous vegetables and mustard oil are rich in the glucosinolate group of molecules. Isothiocyanates are an important group of glucosinolate derivatives. These derivatives have various bioactive properties, including antioxidant, antibacterial, anticarcinogenic, antifungal, antiparasitic, herbicidal and antimutagenic activity. Previous studies indicate that regular intake of such vegetables may considerably reduce the incidence of various types of cancer. These studies have inspired studies where the bioactive agents of these plants have been isolated and explored for their therapeutic applications. The use of these bioactive compounds as antifungals could be a new therapeutic approach against human pathogenic fungi. Isothiocyanates have been studied for their antifungal activity and have the potential to be used for antifungal therapy.


Vegetables like cabbage, cauliflower and broccoli have a distinct flavor because of chemicals called glucosinolates. Whenever we cut and eat these vegetables, glucosinolates are broken down into isothiocyanates. Glucosinolates and isothiocyanates have health benefits because they stop the growth of bacteria, parasites and fungi that cause disease, such as Candida albicans. They may also prevent cancer, as regularly eating these vegetables has been shown to reduce the development of some types of cancer in humans. Investigation is needed to explore how glucosinolates and isothiocyanates could be used to treat fungal infections.


Assuntos
Antifúngicos , Fungos , Isotiocianatos , Isotiocianatos/química , Isotiocianatos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Brassicaceae/química , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/metabolismo , Humanos , Micoses/dietoterapia , Micoses/tratamento farmacológico , Micoses/microbiologia , Verduras/química
9.
Curr Med Mycol ; 9(2): 29-38, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375521

RESUMO

Background and Purpose: In recent years, the inclusion of Candida albicans on the list of infections that pose a threat due to drug resistance has urged researchers to look into cutting-edge and effective antifungal medications. In this regard, the current study investigated the probable mode of action of allyl isothiocyanate (AITC) against Candida albicans. Materials and Methods: In this study, planktonic assay, germ tube inhibition assay, adhesion, and biofilm formation assay were performed to check the growth and virulence factors. Furthermore, ergosterol assay, reactive oxygen production analysis, cell cycle analysis, and quantitative real-time polymerase chain reaction analysis were performed with the aim of finding the mode of action. A biomedical model organism, like a silkworm, was used in an in vivo study to demonstrate AITC anti-infective ability against C. albicans infection. Results: Allyl isothiocyanate completely inhibited ergosterol biosynthesis in C. albicans at 0.125 mg/ml. Allyl isothiocyanate produces reactive oxygen species in both planktonic and biofilm cells of C. albicans. At 0.125 mg/ml concentration, AITC arrested cells at the G2/M phase of the cell cycle, which may induce apoptosis in C. albicans. In quantitative real-time polymerase chain reaction analysis, it was found that AITC inhibited virulence factors, like germ tube formation, at 0.125 mg/ml concentration by downregulation of PDE2, CEK1, TEC1 by 2.54-, 1.91-, and 1.04-fold change, respectively, and upregulation of MIG1, NRG1, and TUP1 by 9.22-, 3.35-, and 7.80-fold change, respectively. The in vivo study showed that AITC treatment successfully protected silkworms against C. albicans infections and increased their survival rate by preventing internal colonization by C. albicans. Conclusion: In vitro and in vivo studies revealed that AITC can be an alternative therapeutic option for the treatment of C. albicans infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...