Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 252: 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387771

RESUMO

Although 'Candidatus Mycoplasma haematomacacae' (formerly known as 'Candidatus Mycoplasma haemomacaque') has been reported on extensively in macaques from Thailand, the USA, Japan, and Brazil, its genetic characterization has primarily been restricted to the 16S rRNA sequences with no exploration on multi-locus sequence analysis. The primary goal of this study was to characterize 'Ca. M. haematomacacae' among Thai macaques based on multiple genetic markers. Between April 2018 and November 2021, blood samples were taken from 580 free-ranging macaques (560 Macaca fascicularis and 20 Macaca nemestrina) in 15 locations encompassing 10 provinces throughout Thailand. Using the conventional PCR assay targeting the 16S ribosomal RNA (16S rRNA) gene, 338 out of 580 macaques (58.27 %) tested hemoplasma-positive. Of these, 40 positive samples were further subjected to DNA sequencing, and all were identified as 'Ca. M. haematomacacae'. Subsequently, the partial nucleotide sequences of 23S ribosomal RNA (23S rRNA) and RNase P RNA (rnpB) genes of this particular hemoplasma species were amplified through nested PCR assay. The analysis of multi-locus genetic markers revealed that the 23S rRNA and rnpB sequences exhibited higher levels of genetic diversity than the 16S rRNA sequences. Furthermore, the 16S rRNA analyses demonstrated that 'Ca. M. haematomacacae' infecting Old World monkeys (Macaca spp.) was most closely related to hemotropic Mycoplasma spp. in black-capped capuchins (Sapajus apella) and Marcgrave's capuchins (Sapajus flavius) from Brazil, as well as establishing a common ancestor clade with hemotropic Mycoplasma spp. from the Neotropical bats in Belize and Peru and an Old World bat in Spain. The 23S rRNA analyses likewise evidenced that 'Ca. M. haematomacacae' formed a sister clade with hemotropic Mycoplasma spp. in Neotropical bats from Belize and Panama. Thus, the present findings, based on multi-locus sequence analysis, suggest a potential origin of 'Ca. M. haematomacacae' from Neotropical and Old World bats. To the best of the authors' knowledge, this study provided the largest dataset so far of multi-locus genetic sequences of 'Ca. M. haematomacacae' isolated from Thai macaques and enhanced the accuracy of phylogenetic analyses, providing insights into their origins among hemotropic Mycoplasma spp. discovered worldwide.


Assuntos
Quirópteros , Infecções por Mycoplasma , Mycoplasma , Animais , RNA Ribossômico 16S/genética , Infecções por Mycoplasma/veterinária , Tailândia , Macaca , RNA Ribossômico 23S/genética , Filogenia , Marcadores Genéticos , Análise de Sequência de DNA , DNA Bacteriano/genética
2.
Acta Trop ; 248: 107030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742788

RESUMO

Despite the natural occurrences of human infections by Plasmodium knowlesi, P. cynomolgi, P. inui, and P. fieldi in Thailand, investigating the prevalence and genetic diversity of the zoonotic simian malaria parasites in macaque populations has been limited to certain areas. To address this gap, a total of 560 long-tailed macaques (Macaca fascicularis) and 20 southern pig-tailed macaques (M. nemestrina) were captured from 15 locations across 10 provinces throughout Thailand between 2018 and 2021 for investigation of malaria, as were 15 human samples residing in two simian-malaria endemic provinces, namely Songkhla and Satun, who exhibited malaria-like symptoms. Using PCR techniques targeting the mitochondrial cytb and cox1 genes coupled with DNA sequencing, 40 long-tailed macaques inhabiting five locations had mono-infections with one of the three simian malaria species. Most of the positive cases of macaque were infected with P. inui (32/40), while infections with P. cynomolgi (6/40) and P. knowlesi (2/40) were less common and confined to specific macaque populations. Interestingly, all 15 human cases were mono-infected with P. knowlesi, with one of them residing in an area with two P. knowlesi-infected macaques. Nucleotide sequence analysis showed a high level of genetic diversity in P. inui, while P. cynomolgi and P. knowlesi displayed limited genetic diversity. Phylogenetic and haplotype network analyses revealed that P. inui in this study was closely related to simian and Anopheles isolates from Peninsular Malaysia, while P. cynomolgi clustered with simian and human isolates from Asian countries. P. knowlesi, which was found in both macaques and humans in this study, was closely related to isolates from macaques, humans, and An. hackeri in Peninsular Malaysia, suggesting a sylvatic transmission cycle extending across these endemic regions. This study highlights the current hotspots for zoonotic simian malaria and sheds light on the genetic characteristics of recent isolates in both macaques and human residents in Thailand.


Assuntos
Malária , Parasitos , Plasmodium knowlesi , Animais , Humanos , Macaca fascicularis/parasitologia , Tailândia/epidemiologia , Filogenia , Malária/epidemiologia , Malária/veterinária , Malária/parasitologia , Plasmodium knowlesi/genética , Malásia/epidemiologia
3.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748059

RESUMO

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Assuntos
Anemia , Malária Cerebral , Plasmodium yoelii , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Eritropoese , Esplenomegalia , Eritrócitos , Macrófagos
4.
Trop Med Infect Dis ; 8(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36977177

RESUMO

COVID-19 is a respiratory disease that can spread rapidly. Controlling the spread through vaccination is one of the measures for activating immunization that helps to reduce the number of infected people. Different types of vaccines are effective in preventing and alleviating the symptoms of the disease in different ways. In this study, a mathematical model, SVIHR, was developed to assess the behavior of disease transmission in Thailand by considering the vaccine efficacy of different vaccine types and the vaccination rate. The equilibrium points were investigated and the basic reproduction number R0 was calculated using a next-generation matrix to determine the stability of the equilibrium. We found that the disease-free equilibrium point was asymptotically stable if, and only if, R0<1, and the endemic equilibrium was asymptotically stable if, and only if, R0>1. The simulation results and the estimation of the parameters applied to the actual data in Thailand are reported. The sensitivity of parameters related to the basic reproduction number was compared with estimates of the effectiveness of pandemic controls. The simulations of different vaccine efficacies for different vaccine types were compared and the average mixing of vaccine types was reported to assess the vaccination policies. Finally, the trade-off between the vaccine efficacy and the vaccination rate was investigated, resulting in the essentiality of vaccine efficacy to restrict the spread of COVID-19.

5.
Sci Rep ; 13(1): 145, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599869

RESUMO

Unlike malaria parasites in humans, non-human primates, rodents, and birds, ungulate malaria parasites and their vectors have received little attention. As a result, understanding of the hosts, vectors, and biology of ungulate malaria parasites has remained limited. In this study, we aimed to identify the vectors of the goat malaria parasite Plasmodium caprae. A total of 1019 anopheline and 133 non-anopheline mosquitoes were collected from goat farms in Thailand, where P. caprae-infected goats were discovered. Anopheline mosquitoes were identified using molecular biological methods that target the cytochrome c oxidase subunit 1 (cox1), the cytochrome c oxidase subunit 2 (cox2) genes, and the internal transcribed spacer 2 (ITS2) region. Pool and individual mosquitoes were tested for P. caprae using the head-thorax parts that contain the salivary glands, with primers targeting three genetic markers including cytochrome b, cytochrome c oxidase subunit 1, and 18S small subunit ribosomal RNA genes. Additionally, goat blood samples were collected concurrently with mosquito surveys and screened to determine the status of malaria infection. This study revealed nine mosquito species belonging to six groups on goat farms, including Hyrcanus, Barbirostris, Subpictus, Funestus, Tessellatus, and Annularis. The DNA of P. caprae was detected in Anopheles subpictus and Anopheles aconitus. This is the first time An. subpictus and An. aconitus have been implicated as probable vectors of P. caprae.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cabras/parasitologia , Malária/parasitologia , Mosquitos Vetores , Plasmodium/genética , Tailândia
6.
Parasitol Int ; 91: 102636, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35926694

RESUMO

Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.


Assuntos
Malária , Parasitos , Plasmodium yoelii , Plasmodium , Animais , Humanos , Malária/parasitologia , Camundongos , Plasmodium/genética , Plasmodium berghei/genética , Plasmodium yoelii/genética , Ratos , Roedores
7.
Parasitol Int ; 91: 102637, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35926693

RESUMO

Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.


Assuntos
Malária , Parasitos , Animais , Suscetibilidade a Doenças , Resistência a Medicamentos/genética , Marcadores Genéticos , Malária/parasitologia , Camundongos , Roedores , Virulência
8.
PLoS One ; 17(8): e0273558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36006998

RESUMO

At present, a large number of people worldwide have been infected by coronavirus 2019 (COVID-19). When the outbreak of the COVID-19 pandemic begins in a country, its impact is disastrous to both the country and its neighbors. In early 2020, the spread of COVID-19 was associated with global aviation. More recently, COVID-19 infections due to illegal or undocumented immigration have played a significant role in spreading the disease in Southeast Asia countries. Therefore, the spread of COVID-19 of all countries' border should be curbed. Many countries closed their borders to all nations, causing an unprecedented decline in global travel, especially cross-border travel. This restriction affects social and economic trade-offs. Therefore, immigration policies are essential to control the COVID-19 pandemic. To understand and simulate the spread of the disease under different immigration conditions, we developed a novel mathematical model called the Legal immigration and Undocumented immigration from natural borders for Susceptible-Infected-Hospitalized and Recovered people (LUSIHR). The purpose of the model was to simulate the number of infected people under various policies, including uncontrolled, fully controlled, and partially controlled countries. The infection rate was parameterized using the collected data from the Department of Disease Control, Ministry of Public Health, Thailand. We demonstrated that the model possesses nonnegative solutions for favorable initial conditions. The analysis of numerical experiments showed that we could control the virus spread and maintain the number of infected people by increasing the control rate of undocumented immigration across the unprotected natural borders. Next, the obtained parameters were used to visualize the effect of the control rate on immigration at the natural border. Overall, the model was well-suited to explaining and building the simulation. The parameters were used to simulate the trends in the number of people infected from COVID-19.


Assuntos
COVID-19 , Emigração e Imigração , COVID-19/epidemiologia , Hospitalização , Humanos , Pandemias , Tailândia/epidemiologia
9.
Parasit Vectors ; 14(1): 571, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749796

RESUMO

BACKGROUND: Vaccines against the sexual stages of the malarial parasite Plasmodium falciparum are indispensable for controlling malaria and abrogating the spread of drug-resistant parasites. Pfs25, a surface antigen of the sexual stage of P. falciparum, is a leading candidate for transmission-blocking vaccine development. While clinical trials have reported that Pfs25-based vaccines are safe and effective in inducing transmission-blocking antibodies, the extent of the genetic diversity of Pfs25 in malaria endemic populations has rarely been studied. Thus, this study aimed to investigate the global diversity of Pfs25 in P. falciparum populations. METHODS: A database of 307 Pfs25 sequences of P. falciparum was established. Population genetic analyses were performed to evaluate haplotype and nucleotide diversity, analyze haplotypic distribution patterns of Pfs25 in different geographical populations, and construct a haplotype network. Neutrality tests were conducted to determine evidence of natural selection. Homology models of the Pfs25 haplotypes were constructed, subjected to molecular dynamics (MD), and analyzed in terms of flexibility and percentages of secondary structures. RESULTS: The Pfs25 gene of P. falciparum was found to have 11 unique haplotypes. Of these, haplotype 1 (H1) and H2, the major haplotypes, represented 70% and 22% of the population, respectively, and were dominant in Asia, whereas only H1 was dominant in Africa, Central America, and South America. Other haplotypes were rare and region-specific, resulting in unique distribution patterns in different geographical populations. The diversity in Pfs25 originated from ten single-nucleotide polymorphism (SNP) loci located in the epidermal growth factor (EGF)-like domains and anchor domain. Of these, an SNP at position 392 (GGA/GCA), resulting in amino acid substitution 131 (Gly/Ala), defined the two major haplotypes. The MD results showed that the structures of H1 and H2 variants were relatively similar. Limited polymorphism in Pfs25 could likely be due to negative selection. CONCLUSIONS: The study successfully established a Pfs25 sequence database that can become an essential tool for monitoring vaccine efficacy, designing assays for detecting malaria carriers, and conducting epidemiological studies of P. falciparum. The discovery of the two major haplotypes, H1 and H2, and their conserved structures suggests that the current Pfs25-based vaccines could be used globally for malaria control.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteína Estafilocócica A/genética , Antígenos de Protozoários/imunologia , Variação Genética , Haplótipos , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/imunologia , Proteína Estafilocócica A/imunologia
10.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911494

RESUMO

Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.IMPORTANCE Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium yoelii/fisiologia , Proteínas de Protozoários/metabolismo , Alelos , Antígenos de Protozoários/metabolismo , Biomarcadores , Citocinas/metabolismo , Imunofluorescência , Interações Hospedeiro-Parasita , Imuno-Histoquímica , Malária/diagnóstico , Malária/metabolismo , Proteínas de Membrana/imunologia , Fragilidade Osmótica , Fagocitose/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Índice de Gravidade de Doença , Baço/imunologia , Baço/metabolismo , Baço/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
11.
Sci Rep ; 8(1): 15280, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327482

RESUMO

Malaria is a disease with diverse symptoms depending on host immune status and pathogenicity of Plasmodium parasites. The continuous parasite growth within a host suggests mechanisms of immune evasion by the parasite and/or immune inhibition in response to infection. To identify pathways commonly inhibited after malaria infection, we infected C57BL/6 mice with four Plasmodium yoelii strains causing different disease phenotypes and 24 progeny of a genetic cross. mRNAs from mouse spleens day 1 and/or day 4 post infection (p.i.) were hybridized to a mouse microarray to identify activated or inhibited pathways, upstream regulators, and host genes playing an important role in malaria infection. Strong interferon responses were observed after infection with the N67 strain, whereas initial inhibition and later activation of hematopoietic pathways were found after infection with 17XNL parasite, showing unique responses to individual parasite strains. Inhibitions of pathways such as Th1 activation, dendritic cell (DC) maturation, and NFAT immune regulation were observed in mice infected with all the parasite strains day 4 p.i., suggesting universally inhibited immune pathways. As a proof of principle, treatment of N67-infected mice with antibodies against T cell receptors OX40 or CD28 to activate the inhibited pathways enhanced host survival. Controlled activation of these pathways may provide important strategies for better disease management and for developing an effective vaccine.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Malária , Plasmodium yoelii/fisiologia , Transdução de Sinais/imunologia , Baço , Animais , Antígenos CD28/imunologia , Malária/genética , Malária/imunologia , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries/métodos , Fatores de Transcrição NFATC/imunologia , Parasitemia/imunologia , RNA Mensageiro/genética , Receptores OX40/imunologia , Baço/metabolismo , Baço/parasitologia
12.
Korean J Parasitol ; 56(2): 153-165, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29742870

RESUMO

Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand's borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.


Assuntos
Antígenos de Protozoários/genética , Variação Genética/genética , Haplótipos/genética , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , DNA de Protozoário/genética , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas , Reação em Cadeia da Polimerase , Tailândia
13.
Malar J ; 17(1): 16, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316927

RESUMO

BACKGROUND: Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. METHODS: The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. RESULTS: Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. CONCLUSIONS: This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.


Assuntos
Variação Genética , L-Lactato Desidrogenase/genética , Filogeografia , Plasmodium falciparum/enzimologia , Animais , Haplótipos , Plasmodium falciparum/isolamento & purificação , Seleção Genética , Análise de Sequência de DNA , Tailândia
14.
Parasit Vectors ; 11(1): 49, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357909

RESUMO

BACKGROUND: The glutamate-rich protein (GLURP) of the malaria parasite Plasmodium falciparum is a key surface antigen that serves as a component of a clinical vaccine. Moreover, the GLURP gene is also employed routinely as a genetic marker for malarial genotyping in epidemiological studies. While extensive size polymorphisms in GLURP are well recorded, the extent of the sequence diversity of this gene is rarely investigated. The present study aimed to explore the genetic diversity of GLURP in natural populations of P. falciparum. RESULTS: The polymorphic C-terminal repetitive R2 region of GLURP sequences from 65 P. falciparum isolates in Thailand were generated and combined with the data from 103 worldwide isolates to generate a GLURP database. The collection was comprised of 168 alleles, encoding 105 unique GLURP subtypes, characterized by 18 types of amino acid repeat units (AAU). Of these, 28 GLURP subtypes, formed by 10 AAU types, were detected in P. falciparum in Thailand. Among them, 19 GLURP subtypes and 2 AAU types are described for the first time in the Thai parasite population. The AAU sequences were highly conserved, which is likely due to negative selection. Standard Fst analysis revealed the shared distributions of GLURP types among the P. falciparum populations, providing evidence of gene flow among the different demographic populations. CONCLUSIONS: Sequence diversity causing size variations in GLURP in Thai P. falciparum populations were detected, and caused by non-synonymous substitutions in repeat units and some insertion/deletion of aspartic acid or glutamic acid codons between repeat units. The P. falciparum population structure based on GLURP showed promising implications for the development of GLURP-based vaccines and for monitoring vaccine efficacy.


Assuntos
Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Alelos , DNA de Protozoário/genética , Genótipo , Humanos , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Tailândia/epidemiologia
15.
Nat Commun ; 8(1): 223, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790316

RESUMO

Infection of mice with strains of Plasmodium yoelii parasites can result in different pathology, but molecular mechanisms to explain this variation are unclear. Here we show that a P. yoelii gene encoding a HECT-like E3 ubiquitin ligase (Pyheul) influences parasitemia and host mortality. We genetically cross two lethal parasites with distinct disease phenotypes, and identify 43 genetically diverse progeny by typing with microsatellites and 9230 single-nucleotide polymorphisms. A genome-wide quantitative trait loci scan links parasite growth and host mortality to two major loci on chromosomes 1 and 7 with LOD (logarithm of the odds) scores = 6.1 and 8.1, respectively. Allelic exchange of partial sequences of Pyheul in the chromosome 7 locus and modification of the gene expression alter parasite growth and host mortality. This study identifies a gene that may have a function in parasite growth, virulence, and host-parasite interaction, and therefore could be a target for drug or vaccine development.Many strains of Plasmodium differ in virulence, but factors that control these distinctions are not known. Here the authors comparatively map virulence loci using the offspring from a P. yoelii YM and N67 genetic cross, and identify a putative HECT E3 ubiquitin ligase that may explain the variance.


Assuntos
Interações Hospedeiro-Parasita/genética , Malária/parasitologia , Plasmodium yoelii/genética , Ubiquitina-Proteína Ligases/genética , Animais , Cruzamentos Genéticos , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parasitemia/genética , Parasitemia/parasitologia , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/patogenicidade , Virulência/genética
16.
Vet Parasitol ; 233: 97-106, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28043395

RESUMO

Clinical manifestations of malaria infection in vertebrate hosts arise from the multiplication of the asexual stage parasites in the blood, while the gametocytes are responsible for the transmission of the disease. Antimalarial drugs that target the blood stage parasites and transmissible gametocytes are rare, but are essentially needed for the effective control of malaria and for limiting the spread of resistance. Artemisinin and its derivatives are the current first-line antimalarials that are effective against the blood stage parasites and gametocytes, but resistance to artemisinin has now emerged and spread in various malaria endemic areas. Therefore, a novel antimalarial drug, or a new drug combination, is critically needed to overcome this problem. The objectives of this study were to evaluate the efficacy of a relatively new antimalarial compound, tafenoquine (TQ), and a combination of TQ and a low dose of artesunate (ATN) on the in vivo blood stage multiplication, gametocyte development and transmission of the avian malaria parasite Plasmodium gallinaceum to the vector Aedes aegypti. The results showed that a 5-d treatment with TQ alone was unable to clear the blood stage parasites, but was capable of reducing the mortality rate, while TQ monotherapy at a high dose of 30mg/kg was highly effective against the gametocytes and completely blocked the transmission of P. gallinaceum. In addition, the combination therapy of TQ+ATN completely cleared P. gallinaceum blood stages and sped up the gametocyte clearance from chickens, suggesting the synergistic effect of the two drugs. In conclusion, TQ is demonstrated to be effective for limiting avian malaria transmission and may be used in combination with a low dose of ATN for safe and effective treatment.


Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Aviária/tratamento farmacológico , Aminoquinolinas/farmacologia , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artesunato , Combinação de Medicamentos , Resistência a Medicamentos , Sinergismo Farmacológico , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Aviária/transmissão , Plasmodium gallinaceum/efeitos dos fármacos , Plasmodium gallinaceum/crescimento & desenvolvimento , Plasmodium gallinaceum/parasitologia
17.
Malar J ; 15(1): 517, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769257

RESUMO

BACKGROUND: An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. METHODS: The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. RESULTS: The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. CONCLUSION: This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , DNA de Protozoário/química , DNA de Protozoário/genética , Humanos , Plasmodium falciparum/genética , Análise de Sequência de DNA , Tailândia
18.
Proc Natl Acad Sci U S A ; 113(25): E3519-28, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27185909

RESUMO

IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ-mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria.


Assuntos
Fosfatidilinositol 3-Quinases , Plasmodium vivax , Humanos , Fígado/parasitologia , Malária/imunologia , Malária Vivax
19.
Infect Genet Evol ; 37: 237-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26626103

RESUMO

Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasite's metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo-inositol 1-phosphate synthase, ferrodoxim reductase-like protein and guanine transporter. In conclusion, the method has shown an effective and efficient way to identify target combinations which are obviously useful in the development of novel antimalarial drug combinations.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/metabolismo , Redes e Vias Metabólicas , Plasmodium falciparum/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Heme/metabolismo , Humanos , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Redes e Vias Metabólicas/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos
20.
Cell Rep ; 12(4): 661-72, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26190101

RESUMO

Invading pathogens trigger specific host responses, an understanding of which might identify genes that function in pathogen recognition and elimination. In this study, we performed trans-species expression quantitative trait locus (ts-eQTL) analysis using genotypes of the Plasmodium yoelii malaria parasite and phenotypes of mouse gene expression. We significantly linked 1,054 host genes to parasite genetic loci (LOD score ≥ 3.0). Using LOD score patterns, which produced results that differed from direct expression-level clustering, we grouped host genes that function in related pathways, allowing functional prediction of unknown genes. As a proof of principle, 14 of 15 randomly selected genes predicted to function in type I interferon (IFN-I) responses were experimentally validated using overexpression, small hairpin RNA knockdown, viral infection, and/or infection of knockout mice. This study demonstrates an effective strategy for studying gene function, establishes a functional gene database, and identifies regulators in IFN-I pathways.


Assuntos
Interações Hospedeiro-Parasita/genética , Interferon Tipo I/metabolismo , Malária/genética , Plasmodium yoelii/genética , Animais , Genoma de Protozoário , Estudo de Associação Genômica Ampla , Interferon Tipo I/genética , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium yoelii/patogenicidade , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...