Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392999

RESUMO

Metabolic profiling is a powerful modern tool in searching for novel biomarkers and indicators of normal or pathological processes in the body [...].

2.
Metabolites ; 13(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999224

RESUMO

The profile of and dynamic concentration changes in tyrosine, phenylalanine, and tryptophan metabolites in blood are of great interest since they could be considered potential biomarkers of different disorders. Some aromatic metabolites, such as 4-hydroxyphenyllactic, 4-hydroxyphenylacetic, phenyllactic, and 4-hydroxybenzoic acids have previously demonstrated their diagnostic significance in critically ill patients and patients with post-COVID-19 syndrome. In this study, a sensitive method, including serum protein precipitation with methanol and ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection, was developed and validated for six phenyl- and five indole-containing acids in human serum. The liquid-liquid extraction was also examined, but it demonstrated unsatisfactory results based on analyte recoveries and the matrix effect. However, the recoveries for all analytes reached 100% and matrix effects were not observed using protein precipitation. This made it possible to use deionized water as a blank matrix. The lower limits of quantitation (LLOQs) were from 0.02 to 0.25 µmol/L. The validated method was used for the analysis of serum samples of healthy volunteers (n = 48) to reveal the reference values of the target analytes. The concentrations of the most clinically significant metabolite 4-hydroxyphenyllactic acid, which were revealed using UPLC-MS/MS and a previously developed gas chromatography-mass spectrometry method, were completely comparable. The proposed UPLC-MS/MS protocol can be used in the routine clinical practice of medical centers.

3.
J Pers Med ; 13(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373960

RESUMO

Post-COVID-19 syndrome is a complex of different symptoms, which results in a multisystemic impairment after the suffering from COVID-19 infection. The aim of the study was to reveal the clinical, laboratory, and gut disorders in patients with post-COVID-19 syndrome (n = 39) before and after taking part in the 14-day complex program of rehabilitation. A complete blood count, coagulation test, blood chemistry, biomarkers, and metabolites in serum samples, and gut dysbiosis were revealed in patients on the day of admission and after 14-day rehabilitation, in comparison with the variables of healthy volunteers (n = 48) or with reference ranges. On the day of discharge, patients noted an improvement in respiratory function, general well-being, and mood. At the same time, the levels of some metabolic (4-hydroxybenzoic, succinic, fumaric acids) and inflammatory (interleukin-6) variables, which were increased on admission, did not reach the level of healthy people during the rehabilitation program. Taxonomy disbalance was observed in patients' feces, namely, a high level of total bacterial mass, a decrease in the number of Lactobacillus spp., and an increase in pro-inflammatory microorganisms. The authors suggest that the post-COVID-19 rehabilitation program should be personalized, considering the patient's state together with not only the baseline levels of biomarkers, but also with the individual taxonomy of the gut microbiota.

4.
Biomedicines ; 11(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239006

RESUMO

Postoperative complications in cardiovascular surgery remain an important unresolved problem, in particular in patients with aortic aneurysm. The role of the altered microbiota in such patients is of great interest. The aim of this pilot study was to determine whether the development of postoperative complications in patients with aortic aneurysm is related with initial or acquired disorders of microbiota metabolism by monitoring the level of some aromatic microbial metabolites (AMMs) circulating in the blood before the surgery and in the early postoperative period. The study comprised patients with aortic aneurysm (n = 79), including patients without complications (n = 36) and patients with all types of complications (n = 43). The serum samples from the patients were collected before and 6 h after the end of the surgery. The most significant results were obtained for the sum of three sepsis-associated AMMs. This level was higher before the surgery in comparison with that of healthy volunteers (n = 48), p < 0.001, and it was also higher in the early postoperative period in patients with all types of complications compared to those without complications, p = 0.001; the area under the ROC curve, the cut-off value, and the odds ratio were 0.7; 2.9 µmol/L, and 5.5, respectively. Impaired microbiota metabolism is important in the development of complications after complex reconstructive aortic surgery, which is the basis for the search for a new prevention strategy.

5.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897959

RESUMO

A number of aromatic metabolites of tyrosine and phenylalanine have been investigated as new perspective markers of infectious complications in the critically ill patients of intensive care units (ICUs). The goal of our research was to build a multivariate model for predicting the outcome of critically ill patients regardless of the main pathology on the day of admission to the ICU. Eight aromatic metabolites were detected in serum using gas chromatography-mass spectrometry. The samples were obtained from the critically ill patients (n = 79), including survivors (n = 44) and non-survivors (n = 35), and healthy volunteers (n = 52). The concentrations of aromatic metabolites were statistically different in the critically ill patients and healthy volunteers. A univariate model for predicting the outcome of the critically ill patients was based on 3-(4-hydroxyphenyl)lactic acid (p-HPhLA). Two multivariate classification models were built based on aromatic metabolites using SIMCA method. The predictive models were compared with the clinical APACHE II scale using ROC analysis. For all of the predictive models the areas under the ROC curve were close to one. The aromatic metabolites (one or a number of them) can be used in clinical practice for the prognosis of the outcome of critically ill patients on the day of admission to the ICU.


Assuntos
Estado Terminal , Sepse , APACHE , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Unidades de Terapia Intensiva , Prognóstico , Curva ROC
6.
J Pers Med ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35330399

RESUMO

The search for new potential biomarkers for the diagnostics of post-neurosurgical bacterial meningitis is required because of the difficulties in its early verification using results of the routine laboratory and biochemical analyses of the cerebrospinal fluid (CSF). The goal of the study was to determine the contents of the aromatic metabolites and biomarkers in the CSF samples of the post-neurosurgical patients (n = 82) and their potential diagnostical significance for the evaluation of the risk of post-neurosurgical meningitis. Patients with signs of post-neurosurgical meningitis (n = 30) had lower median values of glucose and higher values of cell count, neutrophils, lactate, protein, 3-(4-hydroxyphenyl)lactic acid (p-HPhLA), and interleukin-6 (IL-6) than patients without signs of post-neurosurgical meningitis (n = 52). ROC analysis for IL-6 and p-HPhLA resulted in 0.785 and 0.734 values of the area under the ROC curve, with sensitivity 96.30 and 66.67%; specificity 54.17 and 82.69%, respectively. IL-6 should be considered as a non-specific biomarker, in contrast to the microbial metabolite p-HPhLA. If the concentration of p-HPhLA was more or equal to 0.9 µmol/L, the risk of bacterial complications was 9.6 times higher. p-HPhLA is a promising marker for the prognosis of post-neurosurgical meningitis, and its determination on a larger group of post-neurosurgical patients can subsequently prove its diagnostic significance for the verification of CNS infections.

7.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208377

RESUMO

Cerebrospinal fluid is a key biological fluid for the investigation of new potential biomarkers of central nervous system diseases. Gas chromatography coupled to mass-selective detectors can be used for this investigation at the stages of metabolic profiling and method development. Different sample preparation conditions, including extraction and derivatization, can be applied for the analysis of the most of low-molecular-weight compounds of the cerebrospinal fluid, including metabolites of tryptophan, arachidonic acid, glucose; amino, polyunsaturated fatty and other organic acids; neuroactive steroids; drugs; and toxic metabolites. The literature data analysis revealed the absence of fully validated methods for cerebrospinal fluid analysis, and it presents opportunities for scientists to develop and validate analytical protocols using modern sample preparation techniques, such as microextraction by packed sorbent, dispersive liquid-liquid microextraction, and other potentially applicable techniques.


Assuntos
Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metaboloma
8.
Metabolites ; 11(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672777

RESUMO

The community structure and metabolic potential of gut microbiome is not well investigated, especially in chronically critically ill patients with prolonged dependence on support systems after severe brain disorders. Microbial phenolic metabolites can target the brain function by the direct and indirect modulation of inflammation. The aim of this study was to investigate the features of the gut microbiota and profile of certain metabolites in the progression and reversibility of neurological disorders in chronically critically ill patients. Fecal samples were collected in dynamics from such patients (n = 44) and analyzed using 16S rRNA sequencing. Serum microbial and mitochondrial metabolites were measured by GC-MS and compared with the biomarkers and clinical neurological scores. The identified associations between specific bacterial taxa in fecal samples, neurological status and serum levels of metabolites suggest that impacts on specific members of the gut microbiota and their metabolism might be a promising tool for regulating brain function in future.

9.
Biomed Chromatogr ; 35(2): e4969, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32845527

RESUMO

A new approach to the quantitative analysis of aromatic metabolites in cerebrospinal fluid samples of neurosurgical patients based on microextraction by packed sorbent coupled with derivatization and GC-MS was developed. Analytical characteristics such as recoveries (40-90%), limit of detection (0.1-0.3 µm) and limit of quantitation (0.4-0.7 µm) values, accuracy (<±20%), precision (<20%) and linear correlations (R2 ≥ 0.99) over a 0.4-10 µm range of concentrations demonstrated that microextraction by packed sorbent provides results for the quantitative analysis of target compounds comparable with those for liquid-liquid extraction. Similar results were achieved using 40 µl of sample for microextraction by packed sorbent instead of 200 µl for liquid-liquid extraction. Benzoic, 3-phenylpropionic, 3-phenyllactic, 4-hydroxybenzoic, 2-(4-hydroxyphenyl)acetic, homovanillic and 3-(4-hydroxyphenyl)lactic acids were found in cerebrospinal fluid samples (n = 138) of neurosurgical patients in lower concentrations than in serum samples (n = 110) of critically ill patients. Analysis of the cerebrospinal fluid and serum samples taken at the same time from neurosurgical patients (n = 5) revealed similar results for patients without infection and multidirectional results for patients with central nervous system infection. Our preliminary results demonstrate the necessity of further evaluating the aromatic compound profile in cerebrospinal fluid for its subsequent verification for potential diagnostic markers.


Assuntos
Ácidos Carboxílicos/líquido cefalorraquidiano , Ácidos Carboxílicos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos , Adulto , Ácidos Carboxílicos/química , Ácidos Carboxílicos/isolamento & purificação , Feminino , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
10.
Molecules ; 25(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708889

RESUMO

Indole-containing acids-tryptophan metabolites-found in serum and cerebrospinal fluid (CSF) samples of patients with diseases of the central nervous system (CNS) were determined with the use of microextraction by packed sorbent (MEPS) followed by silylation and gas chromatography-mass spectrometry (GC-MS) analysis. MEPS with the following silylation led to the reproducible formation of derivatives with an unsubstituted hydrogen ion in the indole ring, the chromatographic peaks of which are symmetric and can be used for GC-MS analysis without additional derivatization. The recoveries of analytes at the limit of quantitation (LOQ) levels were 40-80% for pooled CSF and 40-60% for serum. The limit of detection (LOD) and LOQ values were 0.2-0.4 and 0.4-0.5 µM, respectively, for both CSF and serum. The precision (the reproducibility, RSD) value of less than 20% and the accuracy (the relative error, RE) value of less than ±20% at the LOQ concentrations meet the Food and Drug Administration (FDA) recommendations. Linear correlations for all analytes were determined over a potentially clinically significant range of concentrations (0.4-10 µM for serum, R2 ≥ 0.9942, and 0.4-7 µM for CSF, R2 ≥ 0.9949). Moreover, MEPS significantly reduced the matrix effect of serum compared to liquid-liquid extraction (LLE), which was revealed in the example of reducing the amount of cholesterol and its relative compounds.


Assuntos
Microextração em Fase Sólida , Triptofano/sangue , Triptofano/líquido cefalorraquidiano , Triptofano/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Triptofano/metabolismo
11.
Crit Care ; 24(1): 312, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513224

RESUMO

BACKGROUND: High serum levels of certain aromatic microbial metabolites (AMM) are associated with severity and mortality in critically ill patients. Omics-based studies suggest gut dysbiosis and reduced microbiome diversity in critical conditions. However, the landscape of gut microbial metabolites is still to be outlined, not to mention the interplay correlation between the metabolome and gut microbiome in critically ill patients. The aim of this study was to analyze the association between serum and fecal levels of AMM and compare them with the composition of gut microbiota in critically ill patients in the acute and chronic stages. METHODS: In this prospective observational pilot study, we analyzed the temporal dynamics of the gut microbiome and the AMM spectrum across two distinct subgroups-acute critical ill (ACI) patients with nosocomial pneumonia and chronically critically ill (CCI) patients (9 subjects each group)-as well as performed comparison with 23 healthy volunteers. The AMM levels for each patient were measured using GC-MS in simultaneously taken serum and fecal samples (SFS). These parameters were compared with 16S rRNA fecal microbiome profiles. RESULTS: The observed proportions of bacterial taxa suggest a significant gut dysbiosis in the ACI and the CCI patients. Stronger imbalance in microbiome composition and dynamics observed in the ACI patients compared to the CCI ones resonates with a higher severity in the former group. The total levels of AMM in serum samples were higher for the ACI patients than for the CCI patients (3.7 (1.4-6.3) and 1.1 (1.0-1.6) µM, respectively; p = 0.0003). The qualitative composition of the SFS was also altered. We discovered significant associations between gut microbial taxa levels and metabolite concentrations in blood serum as well as in feces in each of the ACI and the CCI patients. CONCLUSIONS: Aromatic microbial metabolite profiles in the gut and the serum are interlinked and reflect a disruption of the gut microbial community in critically ill patients.


Assuntos
Estado Terminal , Disbiose/microbiologia , Fezes/microbiologia , Soro/microbiologia , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Humanos , Projetos Piloto , Estudos Prospectivos
12.
J Pharm Biomed Anal ; 177: 112883, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31546136

RESUMO

The article is devoted to the application of modern sample preparation technique - microextraction by packed sorbent (MEPS) - in conjunction with non-conventional type of sorbent - hypercrosslinked polystyrene, that was investigated for the first time in this work. Their combination was used to extract phenylcarboxylic acid-type aromatic microbial metabolites from serum samples of a healthy volunteer with following derivatization and GC-MS detection. As barrel insert and needle for MEPS with hypercrosslinked polystyrene is not produced, we designed a device to imitate the commercial MEPS system with packed granular biporous hypercrosslinked polystyrene. Nine aromatic microbial metabolites, including sepsis associated phenyllactic, 4-hydroxyphenyllactic and 4-hydroxyphenylacetic acids, were extracted from serum samples (recoveries were 20-70%) and a linear dependence was revealed in the most clinically significant range of concentrations (0.5-18 µM). The results obtained demonstrate the perspective of the applying of hypercrosslinked polystyrene in commercial devices for MEPS for the future analyses of biological samples, in particular for the early diagnosis of sepsis and treatment effectiveness control.


Assuntos
Bactérias/metabolismo , Fenilacetatos/sangue , Poliestirenos/química , Sepse/diagnóstico , Microextração em Fase Sólida/métodos , Reagentes de Ligações Cruzadas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Voluntários Saudáveis , Humanos , Limite de Detecção , Fenilacetatos/metabolismo , Sepse/sangue , Sepse/microbiologia
13.
Metabolites ; 9(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547099

RESUMO

Mechanisms of mitochondrial dysfunction in sepsis are being extensively studied in recent years. During our study, concentrations of microbial phenolic acids and mitochondrial metabolites (succinic, α-ketoglutaric, fumaric, itaconic acids) as indicators of sepsis and mitochondrial dysfunction, respectively, are measured by gas chromatography-mass spectrometry (GC-MS) in the blood of critically ill patients at the early and late stages of documented sepsis. The increase in levels of some phenylcarboxylic (phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), p-hydroxyphenyllactic (p-HPhAA)) acids (PhCAs), simultaneously with a rise in levels of mitochondrial dicarboxylic acids, are mainly detected during the late stage of sepsis, especially succinic acid (up to 100-1000 µM). Itaconic acid is found in low concentrations (0.5-2.3 µM) only at early-stage sepsis. PhCAs in vitro inhibits succinate dehydrogenase (SDH) in isolated mitochondria but, unlike itaconic acid which acts as a competitive inhibitor of SDH, microbial metabolites most likely act on the ubiquinone binding site of the respiratory chain. A close correlation of the level of succinic acid in serum and sepsis-induced organ dysfunction is revealed, moreover the most significant correlation is observed at high concentrations of phenolic microbial metabolites (PhCAs) in late-stage sepsis. These data indicate the promise of such an approach for early detection, monitoring the progression of organ dysfunction and predicting the risk of non-survival in sepsis.

14.
Clin Mass Spectrom ; 14 Pt A: 46-53, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34917760

RESUMO

A method for analysis of 8 phenylcarboxylic acids in blood serum was developed based on the coupling of microextraction by packed sorbent, derivatization and GC-MS detection. These compounds are low molecular weight aromatic microbial metabolites that are proven and prospective indicators of sepsis in critically ill patients. Recoveries of the phenylcarboxylic acids from serum samples using microextraction by packed sorbent were 30-70%. The present method was linear (R2  ≥ 0.9981) over a clinically significant range of concentrations (94-2250 µg L-1/0.5-18 µM). The limits of quantification for the optimized method were 60-100 µg L-1/0.4-0.7 µM for phenylpropionic, phenyllactic, 4-hydroxybenzoic and 4-hydroxyphenylacetic acids, and 160 µg L-1/0.9-1.3 µM for benzoic, 4-hydroxyphenyllactic, homovanillic and 4-hydroxyphenylpropionic acids. The developed conditions were used to determine concentrations of the phenylcarboxylic acids in the most complicated matrix - serum samples of critically ill patients. Results were compared with liquid-liquid extraction and revealed a reduction in the time for sample preparation (45 min vs. 6 min) and serum (200 µL vs. 80 µL) volume. The combination of microextraction by packed sorbent and GC-MS methods, especially when fully automated could be a powerful tool for the clinical diagnosis of sepsis.

15.
Shock ; 50(3): 273-279, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29189605

RESUMO

INTRODUCTION: We hypothesized that aromatic microbial metabolites (AMM), such as phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), and p-hydroxyphenyllactic (p-HPhLA) acids, contribute to the pathogenesis of septic shock. METHODS: Clinical and laboratory data of patients with community-acquired pneumonia were obtained on intensive care unit admission and the next day. Patients were divided into two groups based on septic shock presence or absence. The levels of AMM (PhLA, p-HPhAA, p-HPhLA, and their sum, ∑3AMM), catecholamine metabolites (3,4-dihydroxymandelic [DHMA], 3,4-dihydroxyphenylacetic [DOPAC], and homovanillic [HVA] acids), lactate, N-terminal pro-brain natriuretic peptide (NT-proBNP), inducible nitric oxide synthase (iNOS), and procalcitonin (PCT) were compared. Correlations between AMM and clinical and laboratory data were calculated. RESULTS: There were 20 patients in the septic shock group and 21 in the nonseptic shock group. On admission, the septic shock patients demonstrated significantly higher levels of PhLA (2.3 vs. 0.8 µmol/L), p-HPhAA (4.6 vs. 1.4 µmol/L), p-HPhLA (7.4 vs. 2.6 µmol/L), HVA, lactate, and significantly lower levels of iNOS. The next day, the two groups also showed significant differences in the levels of PCT and NT-proBNP. The correlation between ∑3AMM and presence of shock, levels of lactate, HVA, and NT-proBNP on admission was 0.44, 0.67, 0.57, and 0.38, respectively, and the correlation on the next day was 0.59, 0.73, 0.76, and 0.6, respectively (P < 0.01). These findings can be explained by the ability of AMM to reduce tyrosine hydroxylase activity, thus limiting the synthesis of catecholamines. CONCLUSIONS: AMM are involved in the pathogenesis of septic shock.


Assuntos
Pneumonia , Choque Séptico , Ácido 3,4-Di-Hidroxifenilacético/sangue , Acetatos/sangue , Idoso , Feminino , Ácido Homovanílico/sangue , Humanos , Lactatos/sangue , Masculino , Ácidos Mandélicos/sangue , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Óxido Nítrico Sintase Tipo II/sangue , Fragmentos de Peptídeos/sangue , Pneumonia/sangue , Pneumonia/complicações , Choque Séptico/sangue , Choque Séptico/etiologia
16.
J Crit Care ; 43: 246-255, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28942199

RESUMO

Metabolomics globally evaluates the totality of the endogenous metabolites in patient's body, at the same time reflecting gene function, enzyme activity and degree of organ dysfunction in sepsis. The authors performed the analysis of the main chemical classes of low molecular weight compounds (amino acids, polyols, fatty acids, hydroxy acids, amines, nucleotides and their derivatives) that quantitatively distinguish patients with sepsis from healthy ones. The following keywords were used to find papers published in the Scopus and Web of Science databases from 2008 to 2015: (marker OR biomarker) AND (sepsis OR critical ill OR pneumonia OR hypoxia). Key words for the search were the following: metabolomics, metabolic profiling, sepsis, metabolism, biomarkers, critically ill patients, multiple organ failure. Several metabolomic findings in sepsis are still waiting for an explanation. When assessing metabolomic analysis results in patients with sepsis we should take into account the intervention of microbial metabolism. Among the low molecular weight compounds detected in septic patient blood, a special attention should be paid to the molecules which could be attributed to "common metabolites" of man and bacteria. The genomic region overlap and the production of enzymes which are similar in function and final products could be a possible reason for this phenomenon. For example, microbial biodegradation products of aromatic compounds are increased many times in blood of patients with sepsis. On the one hand, it shows a high metabolic activity of the bacteria. On the other hand, these molecules are intermediates in the metabolism of aromatic amino acids such as tyrosine and phenylalanine in human body. It is important that there are many clinical studies, which confirmed the diagnostic and prognostic significance of series of aromatic metabolites, including those with intrinsic biological activity. We can't exclude the presence of signaling pathways, cell receptors, transmembrane transporters and others which are common for a human and bacteria and their direct participation in mechanisms of organ dysfunction and hypotension in sepsis. Thus, today, we should not limit ourselves studying eukaryotic cells while searching for new molecular mechanisms of sepsis-associated organ failure and septic shock. We should take into account and simulate in the experiments the changes of a human internal environment, which occur during the radical microbiome "restructuring" in critically ill patients. This approach opens up new prospects for an objective monitoring of diseases, carrying out an assessment of the integral metabolic profile in a given time on common metabolites (particularly aromatic), and in future will provide new targets for therapeutic effects.


Assuntos
Bactérias/metabolismo , Biomarcadores/metabolismo , Sepse/metabolismo , Humanos , Metaboloma , Metabolômica , Microbiota , Prognóstico , Sepse/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...