Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(11): 19354-19362, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36321616

RESUMO

Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects, and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device. Their band dispersion is systematically visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution. A linear scaling of effective mass with feature sizes is reported, underlining the Dirac nature of the superstructures. In situ electrostatic doping dramatically enhances the effective hole mass and leads to the direct observation of an electronic band gap that results in a peak-to-peak band separation of 0.64 ± 0.03 eV, which is shown via first-principles calculations to be strongly renormalized by carrier-induced screening. The methodology demonstrates band structure engineering guided by directly viewing structurally and electrically tunable massive Dirac quasiparticles in lithographic superstructures at the nanoscale.

2.
ACS Nano ; 15(4): 7155-7167, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33724766

RESUMO

Nonlinear optical (NLO) phenomena such as harmonic generation and Kerr and Pockels effects are of great technological importance for lasers, frequency converters, modulators, switches, etc. Recently, two-dimensional (2D) materials have drawn significant attention due to their strong and peculiar NLO properties. Here, we describe an efficient first-principles workflow for calculating the quadratic optical response and apply it to 375 non-centrosymmetric semiconductor monolayers from the Computational 2D Materials Database (C2DB). Sorting the nonresonant nonlinearities with respect to bandgap Eg reveals an upper limit proportional to Eg-4, which is neatly explained by two distinct generic models. We identify multiple promising candidates with giant nonlinearities and bandgaps ranging from 0.4 to 5 eV, some of which approach the theoretical upper limit and greatly outperform known materials. Our comprehensive library of ab initio NLO spectra for all 375 monolayers is freely available via the C2DB Web site.

3.
Nat Commun ; 11(1): 3011, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541789

RESUMO

Raman spectroscopy is frequently used to identify composition, structure and layer thickness of 2D materials. Here, we describe an efficient first-principles workflow for calculating resonant first-order Raman spectra of solids within third-order perturbation theory employing a localized atomic orbital basis set. The method is used to obtain the Raman spectra of 733 different monolayers selected from the Computational 2D Materials Database (C2DB). We benchmark the computational scheme against available experimental data for 15 known monolayers. Furthermore, we propose an automatic procedure for identifying a material based on an input experimental Raman spectrum and apply it to the cases of MoS2 (H-phase) and WTe2 (T[Formula: see text]-phase). The Raman spectra of all materials at different excitation frequencies and polarization configurations are freely available from the C2DB. Our comprehensive and easily accessible library of ab initio Raman spectra should be valuable for both theoreticians and experimentalists in the field of 2D materials.

4.
Sci Rep ; 10(1): 5537, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218493

RESUMO

Photoexcited intralayer excitons in van der Waals heterostructures (vdWHs) with type-II band alignment have been observed to tunnel into interlayer excitons on ultrafast timescales. Such interlayer excitons have sufficiently long lifetimes that inducing dissociation with external in-plane electric fields becomes an attractive option of improving efficiency of photocurrent devices. In the present paper, we calculate interlayer exciton binding energies, Stark shifts, and dissociation rates for six different transition metal dichalcogenide (TMD) vdWHs using a numerical procedure based on exterior complex scaling (ECS). We utilize an analytical bilayer Keldysh potential describing the interaction between the electron-hole pair, and validate its accuracy by comparing to the full multilayer Poisson equation. Based on this model, we obtain an analytical weak-field expression for the exciton dissociation rate. The heterostructures analysed are MoS2/MoSe2, MoS2/WS2, MoS2/WSe2, MoSe2/WSe2, WS2/MoSe2, and WS2/WSe2 in various dielectric environments. For weak electric fields, we find that WS2/WSe2 supports the fastest dissociation rates among the six structures. We, furthermore, observe that exciton dissociation rates in vdWHs are significantly larger than in their monolayer counterparts.

5.
Nat Nanotechnol ; 14(4): 340-346, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778216

RESUMO

Two-dimensional materials such as graphene allow direct access to the entirety of atoms constituting the crystal. While this makes shaping by lithography particularly attractive as a tool for band structure engineering through quantum confinement effects, edge disorder and contamination have so far limited progress towards experimental realization. Here, we define a superlattice in graphene encapsulated in hexagonal boron nitride, by etching an array of holes through the heterostructure with minimum feature sizes of 12-15 nm. We observe a magnetotransport regime that is distinctly different from the characteristic Landau fan of graphene, with a sizeable bandgap that can be tuned by a magnetic field. The measurements are accurately described by transport simulations and analytical calculations. Finally, we observe strong indications that the lithographically engineered band structure at the main Dirac point is cloned to a satellite peak that appears due to moiré interactions between the graphene and the encapsulating material.

6.
Nat Commun ; 9(1): 1633, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691376

RESUMO

Two-dimensional (2D) semiconducting materials are promising building blocks for optoelectronic applications, many of which require efficient dissociation of excitons into free electrons and holes. However, the strongly bound excitons arising from the enhanced Coulomb interaction in these monolayers suppresses the creation of free carriers. Here, we identify the main exciton dissociation mechanism through time and spectrally resolved photocurrent measurements in a monolayer WSe2 p-n junction. We find that under static in-plane electric field, excitons dissociate at a rate corresponding to the one predicted for tunnel ionization of 2D Wannier-Mott excitons. This study is essential for understanding the photoresponse of 2D semiconductors and offers design rules for the realization of efficient photodetectors, valley dependent optoelectronics, and novel quantum coherent phases.

7.
J Phys Condens Matter ; 29(16): 165702, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28145897

RESUMO

The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz-Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.

8.
Sci Rep ; 7: 39844, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117326

RESUMO

Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN.

9.
Phys Rev Lett ; 115(14): 143001, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551808

RESUMO

The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

10.
Opt Express ; 20(4): 3663-74, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418125

RESUMO

The polarizability of a nanostructure is an important parameter that determines the optical properties. An exact semi-analytical solution of the electrostatic polarizability of a general geometry consisting of two segments forming a cylinder that can be arbitrarily buried in a substrate is derived using bipolar coordinates, cosine-, and sine-transformations. Based on the presented expressions, we analyze the polarizability of several metal nanowire geometries that are important within plasmonics. Our results provide physical insight into the interplay between the multiple resonances found in the polarizability of metal nanowires at surfaces.

11.
Opt Express ; 19(23): 22775-85, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109157

RESUMO

The electrostatic polarizability for both vertical and horizontal polarization of two conjoined half-cylinders partly buried in a substrate is derived in an analytical closed-form expression. Using the derived analytical polarizabilities we analyze the localized surface plasmon resonances of three important metal nanowire configurations: (1) a half-cylinder, (2) a half-cylinder on a substrate, and (3) a cylinder partly buried in a substrate. Among other results we show that the substrate plays an important role for spectral location of the plasmon resonances. Our analytical results enable an easy, fast, and exact analysis of many complicated plasmonic nanowire configurations including nanowires on substrates. This is important both for comparison with experimental data, for applications, and as benchmarks for numerical methods.

12.
J Phys Condens Matter ; 23(34): 345501, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21841232

RESUMO

The Si(1-x)Sn(x) material system is an interesting candidate for an optically active material compatible with Si. Based on density functional theory with quasiparticle corrections we calculate the electronic band structure of zinc-blende SiSn under both compressive and tensile strain. At 2.2% tensile strain the band gap becomes direct with a magnitude of 0.85 eV. We develop an accurate tight-binding parameterization of the electronic structure and calculate the optical properties of SiSn. Furthermore, the silicide SiSn(2) is investigated and found to have metallic character.

13.
Opt Lett ; 36(5): 713-5, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368958

RESUMO

Localized surface plasmon resonances of metal nanoparticles of arbitrary shape are analyzed in the near-static limit with retardation included to the second order. Starting from the electrostatic approximation, the second-order correction to the resonant dielectric constant is expressed by means of a triple surface integral. For arbitrary nanoparticles with cylindrical symmetry we show how the triple surface integral can be significantly simplified, resulting in a computationally efficient scheme for evaluation of nanoparticle plasmon eigenresonances in the near-static limit. The approach allows for calculation of both dipolar and higher-order resonances.


Assuntos
Nanopartículas/química , Fenômenos Ópticos , Luz , Tamanho da Partícula , Prata/química , Eletricidade Estática , Propriedades de Superfície , Titânio/química
14.
Nat Mater ; 9(4): 315-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228819

RESUMO

Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice positions of graphene grown on an Ir(111) substrate.

15.
J Phys Condens Matter ; 21(11): 115502, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21693920

RESUMO

The electronic and optical properties of the metallic bcc and ß-Sn phases of tin are studied using density functional theory. The effects of spin-orbit coupling are examined and significant splittings are found in the band structures for both phases. Based on ab initio band structures we calculate the anisotropic optical response of ß-Sn. Both intra- and interband contributions are included and the plasma frequencies for both the ordinary and extraordinary optical axis are calculated. The theoretical results are found to be in excellent agreement with experimental spectra for the anisotropic optical response. We identify the electronic transitions responsible for the dominant interband resonances in the near-infrared response.

16.
Phys Rev Lett ; 100(13): 136804, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18517984

RESUMO

Antidot lattices, defined on a two-dimensional electron gas at a semiconductor heterostructure, are a well-studied class of man-made structures with intriguing physical properties. We point out that a closely related system, graphene sheets with regularly spaced holes ("antidots"), should display similar phenomenology, but within a much more favorable energy scale, a consequence of the Dirac fermion nature of the states around the Fermi level. Further, by leaving out some of the holes one can create defect states, or pairs of coupled defect states, which can function as hosts for electron spin qubits. We present a detailed study of the energetics of periodic graphene antidot lattices, analyze the level structure of a single defect, calculate the exchange coupling between a pair of spin qubits, and identify possible avenues for further developments.

17.
Nanotechnology ; 19(11): 115704, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730564

RESUMO

The hexagonal quantum well (QW) is studied as a model for hexagonal nanowires, and the effects of donor impurities and geometrical deformations of the well are treated. By use of the Poisson equation the donor potential is calculated and the eigenspectrum of the hexagonal QW is shown to converge to that of a paraboloid quantum well with increasing donor density. Small deformations of the hexagon are shown to change the eigenspectrum significantly and give strong splittings of degenerate eigenvalues. Analytical approximations for the potential and eigenfunctions on the deformed hexagons are given.

18.
Nano Lett ; 5(2): 291-4, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15794613

RESUMO

The linear optical properties of semiconducting carbon nanotubes are dominated by quasi-one-dimensional excitons formed by single electron-hole pairs. Hence, the nonlinear response at high pump levels most likely leads to the formation of exciton complexes involving several electron-hole pairs. Such complexes would therefore play an important role in, e.g., lasing applications. We demonstrate here that the biexciton complex is surprisingly stable for nanotubes in a wide diameter range. Theoretical predictions for the signature of such states in pump-probe spectroscopy are presented.


Assuntos
Modelos Químicos , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Fotoquímica/métodos , Simulação por Computador , Luz , Prótons , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...