RESUMO
BACKGROUND: A previous prospective multicenter study revealed the change of the oncologists' chemotherapy advice due to the 70-Gene signature (GS) test result in half of the estrogen receptor-positive (ER+) invasive early-stage breast cancer patients with disputable chemotherapy indication. This resulted in less patients receiving chemotherapy. This study aims to complement these results by the 7-year oncological outcomes according to the 70-GS test result and the oncologists' pre-test advice. METHODS: Patients operated for early-stage ER+ breast cancer with disputable chemotherapy indication, had been prospectively included between 2013 and 2015. Oncologists were asked whether they intended to administer adjuvant chemotherapy before deployment of the 70-GS test. Information on adjuvant systemic treatment and oncological outcome was obtained through active follow-up by data managers of the Netherlands Cancer Registry. The primary endpoint of this study was distant metastasis-free survival (DMFS) according to the genomic risk. Exploratory analyses were done to evaluate DMFS in relation to the oncologists' pre-test advice. RESULTS: After a median follow-up of 7 years, distant metastases were diagnosed in 23 of the 606 patients (3.8%) and 36 (5.9%) patients had died. The DMFS rate for the 357 70-GS genomic low-risk patients was 94.2% (95% CI 91.2-96.2) and 89.1% for the 249 genomic high-risk patients (95% CI 84.3-92.4). Of the low-risk patients 3% had received chemotherapy compared to 80% of the high-risk patients. For the subgroups based on the pre-test oncologists' advice (no chemotherapy/chemotherapy/unsure) there were no clinically relevant differences in DMFS (89.8, 93.2 and 92.0%, respectively), while comparable proportions of patients had received chemotherapy. CONCLUSIONS: In patients with early-stage ER+ breast cancer with a disputable chemotherapy indication it is sensible to deploy the 70-GS to better select patients for adjuvant chemotherapy.
RESUMO
Strain LMG 33000T was isolated from a Bombus lapidarius gut sample. It shared the highest percentage 16S rRNA sequence identity, average amino acid identity, and amino acid identity of conserved genes with Convivina intestini LMG 28291T (95.86â%, 69.9 and 76.2â%, respectively), and the highest percentage OrthoANIu value with Fructobacillus fructosus DSM 20349T (71.4â%). Phylogenomic analyses by means of 107 or 120 conserved genes consistently revealed Convivina as nearest neighbour genus. The draft genome of strain LMG 33000T was 1.44 Mbp in size and had a DNA G+C content of 46.1 mol%. Genomic and physiological analyses revealed that strain LMG 33000T was a typical obligately fructophilic lactic acid bacterium that lacked the adhE and aldh genes and that did not produce ethanol during glucose or fructose metabolism. In contrast, Convivina species have the adhE and aldh genes in their genomes and produced ethanol from glucose and fructose metabolism, which is typical for heterofermentative lactic acid bacteria. Moreover, strain LMG 33000T exhibited catalase activity, an unusual characteristic among lactic acid bacteria, that is not shared with Convivina species. Given its position in the phylogenomic trees, and the difference in genomic percentage G+C content and in physiological and metabolic characteristics between strain LMG 33000T and Convivina species, we considered it most appropriate to classify strain LMG 33000T into a novel genus and species within the Lactobacillaceae family for which we propose the name Eupransor demetentiae gen. nov., sp. nov., with LMG 33000T (=CECT 30958T) as the type strain.
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , RNA Ribossômico 16S/genética , Abelhas/microbiologia , DNA Bacteriano/genética , Frutose/metabolismo , Ácido Láctico/metabolismo , Glucose/metabolismo , Etanol/metabolismoRESUMO
A collection of 161 Ralstonia isolates, including 90 isolates from persons with cystic fibrosis, 27 isolates from other human clinical samples, 8 isolates from the hospital environment, 7 isolates from industrial samples, and 19 environmental isolates, was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification and yielded confident species level identification scores for only 62 (39%) of the isolates, including four that proved misidentified subsequently. Whole-genome sequence analysis of 32 representative isolates for which no confident MALDI-TOF MS species level identification was obtained revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively, and provided the basis for updating an in-house MALDI-TOF MS database. A reanalysis of all mass spectra with the updated MALDI-TOF MS database increased the percentage of isolates with confident species level identification up to 77%. The antimicrobial susceptibility of 30 isolates mainly representing novel human clinical and environmental Ralstonia species was tested toward 17 antimicrobial agents and demonstrated that the novel Ralstonia species were generally multi-resistant, yet susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline. An analysis of genomic antimicrobial resistance genes in 32 novel and publicly available genome sequences revealed broadly distributed beta-lactam resistance determinants.IMPORTANCEThe present study demonstrated that a commercial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification database can be tailored to improve the identification of Ralstonia species. It also revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively. An analysis of minimum inhibitory concentration values demonstrated that the novel Ralstonia species were generally multi-resistant but susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Ralstonia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Ralstonia/efeitos dos fármacos , Ralstonia/genética , Ralstonia/isolamento & purificação , Ralstonia/classificação , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana , Genoma Bacteriano/genética , Sequenciamento Completo do GenomaRESUMO
The increase in studies on bee microbiomes is prompted by concerns over global pollinator declines. Bumble bees host core and non-core microbiota which may contribute to increased lifetime fitness. The presence of Fructobacillus in the gut microbiomes of bumble bee workers, or the replacement of core symbionts with Fructobacillus bacteria, has been considered a marker of dysbiosis. A phylogenomic analysis and functional genomic characterization of the genomes of 21 Fructobacillus isolates from bumble bees demonstrated that they represented four species, i.e. Fructobacillus cardui, Fructobacillus fructosus, Fructobacillus tropaeoli, and the novel species Fructobacillus evanidus sp. nov. Our results confirmed and substantiated the presence of two phylogenetically and functionally distinct Fructobacillus species clades that differ in genome size, percentage G + C content, the number of coding DNA sequences and metabolic characteristics. Clade 1 and clade 2 species differed in amino acid and, to a lesser extent, in carbohydrate metabolism, with F. evanidus and F. tropaeoli genomes featuring a higher number of complete metabolic pathways. While Fructobacillus genomes encoded genes that allow adhesion, biofilm formation, antibacterial activity and detoxification, other bacteria isolated from the bumble bee gut appeared better equipped to co-exist with the bumble bee host. The isolation and identification of multiple Fructobacillus species from several bumble bee gut samples in the present study also argued against a specific partnership between Fructobacillus species and their bumble bee hosts.
Assuntos
Composição de Bases , DNA Bacteriano , Genoma Bacteriano , Filogenia , Abelhas/microbiologia , Animais , Genoma Bacteriano/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Genômica , Simbiose , Tamanho do GenomaRESUMO
We conducted in vitro antimicrobial susceptibility testing of 267 Achromobacter isolates for 16 antibiotics from 2017 to 2022. The highest susceptibility was found for piperacillin-tazobactam (70%) and ceftazidime-avibactam (62%). Between 30% and 49% of strains were susceptible to tigecycline, ceftazidime, and meropenem. We applied species-specific Achromobacter xylosoxidans breakpoints for piperacillin-tazobactam, meropenem, and trimethoprim-sulfamethoxazole and EUCAST pharmacokinetic/pharmacodynamic (PK/PD) breakpoints for the others. A. xylosoxidans was the most frequently isolated species, followed by Achromobacter insuavis and Achromobacter ruhlandii.
Assuntos
Achromobacter , Fibrose Cística , Humanos , Meropeném , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Achromobacter/genética , Piperacilina/farmacologia , Tazobactam/farmacologiaRESUMO
BACKGROUND: To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS: The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION: The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.
RESUMO
Strain LMG 31809 T was isolated from a top soil sample of a temperate, mixed deciduous forest in Belgium. Comparison of its 16S rRNA gene sequence with that of type strains of bacteria with validly published names positioned it in the class Alphaproteobacteria and highlighted a major evolutionary divergence from its near neighbor species which represented species of the orders Emcibacterales and Sphingomonadales. 16S rRNA amplicon sequencing of the same soil sample revealed a highly diverse community in which Acidobacteria and Alphaproteobacteria predominated, but failed to yield amplicon sequence variants highly similar to that of strain LMG 31809 T. There were no metagenome assembled genomes that corresponded to the same species and a comprehensive analysis of public 16S rRNA amplicon sequencing data sets demonstrated that strain LMG 31809 T represents a rare biosphere bacterium that occurs at very low abundances in multiple soil and water-related ecosystems. The genome analysis suggested that this strain is a strictly aerobic heterotroph that is asaccharolytic and uses organic acids and possibly aromatic compounds as growth substrates. We propose to classify LMG 31809 T as a novel species within a novel genus, Govania unica gen. nov., sp. nov, within the novel family Govaniaceae of the class Alphaproteobacteria. Its type strain is LMG 31809 T (=CECT 30155 T). The whole-genome sequence of strain LMG 31809 T has a size of 3.21 Mbp. The G + C content is 58.99 mol%. The 16S rRNA gene and whole-genome sequences of strain LMG 31809 T are publicly available under accession numbers OQ161091 and JANWOI000000000, respectively.
Assuntos
Alphaproteobacteria , Ácidos Graxos , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Ecossistema , Filogenia , Bactérias/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem BacterianaRESUMO
Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.
Assuntos
Ácidos Graxos , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Florestas , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , SoloRESUMO
We present polyphasic taxonomic data to demonstrate that strain 125703-2019T, a human blood isolate, represents a novel species within the genus Pseudoclavibacter, and to reclassify the illegitimate Zimmermannella alba Lin et al., 2004 as Pseudoclavibacter albus comb. nov. Upon primary isolation, strain 125703-2019T could not be identified reliably using MALDI-TOF mass spectrometry during routine diagnostic work, but partial 16S rRNA gene sequence analysis revealed that it belonged to the genus Pseudoclavibacter. Average nucleotide identity and digital DNA-DNA hybridisation analyses confirmed that it represented a novel species within this genus. A detailed physiological characterisation yielded differential tests between the novel species and its nearest neighbor taxa, which could also be differentiated using MALDI-TOF mass spectrometry. We propose to formally classify this strain into the novel species Pseudoclavibacter triregionum sp. nov., with strain 125703-2019T (= R-76471T, LMG 31777T, CCUG 74796T) as the type strain. The whole-genome assembly of strain 125703-2019T has a size of 2.4 Mb and a G + C content of 72.74%. A Pseudoclavibacter pangenome analysis revealed that 667 gene clusters were exclusively present in strain 125703-2019T. While these gene clusters were enriched in several COG functional categories, this analysis did not reveal functions that explained the occurrence of this species in human infection. Finally, several phylogenetic and phylogenomic analyses demonstrated that the genus Pseudoclavibacter is polyphyletic with Pseudoclavibacter soli and Pseudoclavibacter caeni representing a unique and deeply branching line of descent within the family Microbacteriaceae. We therefore also propose to reclassify both species into the novel genus Caespitibacter gen. nov. as Caespitibacter soli comb. nov. and Caespitibacter caeni comb. nov., respectively, and with C. soli comb. nov. as the type species.
Assuntos
Ácidos Graxos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Strains LMG 7974T and LMG 8286T represent single, novel Campylobacter lineages with Campylobacter pinnipediorum and Campylobacter mucosalis as nearest phylogenomic neighbours, respectively. The results of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses of LMG 7974T, LMG 8286T and type strains of species of the genus Campylobacter confirmed that these strains represent novel species of the genus Campylobacter. The 16S rRNA gene sequences of both strains showed highest identity towards C. mucosalis (97.84 and 98.74â%, respectively). Strains LMG 7974T and LMG 8286T shared 72.5 and 73.7% ANI, respectively, with their nearest phylogenomic neighbours and less than 21â% dDDH. The draft genome sizes of LMG 7974T and LMG 8286T are 1â945429 bp and 1â708214 bp in length with percentage DNA G+C contents of 33.8 and 37.2â%, respectively. Anomalous biochemical characteristics and low MALDI-TOF mass spectrometry log scores supported their designation as representing novel species of the genus Campylobacte. We therefore propose to classify strain LMG 7974T (=CCUG 20705T) as the type strain of the novel species Campylobacter majalis sp. nov. and strain LMG 8286T (=CCUG 24193T, NCTC 11879T) as the type strain of the novel species Campylobacter suis sp. nov.
Assuntos
Campylobacter , Ácidos Graxos , Animais , Suínos , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Mucosa/química , Hibridização de Ácido NucleicoRESUMO
A novel bacterium, designated strain Msb3T, was recently isolated from leaves of the yam family plant Dioscorea bulbifera (Dioscoreaceae). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus Paraburkholderia with Paraburkholderia xenovorans as nearest validly named neighbour taxon (99.3â% sequence similarity towards the P. xenovorans type strain). Earlier genome sequence analysis revealed a genome of 8.35 Mb in size with a G+C content of 62.5 mol%, which was distributed over two chromosomes and three plasmids. Here, we confirm that strain Msb3T represents a novel Paraburkholderia species. In silico DNA-DNA hybridization and average nucleotide identity (OrthoANIu) analyses towards P. xenovorans LB400T yielded 58.4â% dDDH and 94.5â% orthoANIu. Phenotypic and metabolic characterization revealed growth at 15 °C on tryptic soy agar, growth in the presence of 1â% NaCl and the lack of assimilation of phenylacetic acid as distinctive features. Together, these data demonstrate that strain Msb3T represents a novel species of the genus Paraburkholderia, for which we propose the name Paraburkholderia dioscoreae sp. nov. The type strain is Msb3T (=LMG 31881T, DSM 111632T, CECT 30342T).
Assuntos
Florestas , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , UbiquinonaRESUMO
We present genomic, phylogenomic, and phenotypic taxonomic data to demonstrate that three human ear isolates represent a novel species within the genus Gulosibacter. These isolates could not be identified reliably using MALDI-TOF mass spectrometry during routine diagnostic work, but partial 16S rRNA gene sequence analysis revealed that they belonged to the genus Gulosibacter. Overall genomic relatedness indices between the draft genome sequences of the three isolates and of the type strains of established Gulosibacter species confirmed that the three isolates represented a single novel Gulosibacter species. A biochemical characterisation yielded differential tests between the novel and established Gulosibacter species, which could also be differentiated using MALDI-TOF mass spectrometry. We propose to formally classify these three isolates into Gulosibacter hominis sp. nov., with 401352-2018 T (= LMG 31778 T, CCUG 74795 T) as the type strain. The whole-genome sequence of strain 401352-2018 T has a size of 2,340,181 bp and a G+C content of 62.04 mol%. A Gulosibacter pangenome analysis revealed 467 gene clusters that were exclusively present in G. hominis genomes. While these G. hominis specific gene clusters were enriched in several COG functional categories, this analysis did not reveal functions that suggested a role in the human microbiome, nor did it explain the occurrence of G. hominis in ear infections. The absence of acquired antimicrobial resistance determinants and virulence factors in the G. hominis genomes, and an analysis of publicly available 16S rRNA gene sequences and 16S rRNA amplicon sequencing data sets suggested that G. hominis is a member of the human skin microbiota that may occasionally be involved in opportunistic infections.
Assuntos
Microbiota , Infecções Oportunistas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Humanos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Achromobacter spp. are increasingly reported among cystic fibrosis patients. Genotyping requires time-consuming methods such as multilocus sequence typing or pulsed-field gel electrophoresis. Therefore, data on the prevalence of multiresistant epidemic clones, especially A. xylosoxidans ST137 (AxST137) and the Danish epidemic strain A. ruhlandii (DES), are lacking. We recently developed and published a database for Achromobacter species identification by matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF MS; Bruker Daltonics). The aim of this study was to evaluate the ability of the MALDI-TOF MS to distinguish these multiresistant epidemic clones within Achromobacter species. All the spectra of A. xylosoxidans (n = 1,571) and A. ruhlandii (n = 174) used to build the local database were analyzed by ClinProTools, MALDI Biotyper PCA, MALDI Biotyper dendrogram, and flexAnalysis software for biomarker peak detection. Two hundred two isolates (including 48 isolates of AxST137 and 7 of DES) were tested. Specific biomarker peaks were identified: absent peak at m/z 6,651 for AxST137 isolates and present peak at m/z 9,438 for DES isolates. All tested isolates were well typed by our local database and clustered within distinct groups (ST137 or non-ST137 and DES or non-DES) no matter the MALDI-TOF software or only by simple visual inspection of the spectra by any user. The use of MALDI-TOF MS allowed us to identify isolates of A. xylosoxidans belonging to the AxST137 clone that spread in France and Belgium (the Belgian epidemic clone) and of A. ruhlandii belonging to the DES clone. This tool will help the implementation of segregation measures to avoid interpatient transmission of these resistant clones.
Assuntos
Achromobacter denitrificans , Achromobacter , Fibrose Cística , Epidemias , Achromobacter denitrificans/genética , Células Clonais , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA-DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.
Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/genética , Hidrocarbonetos Aromáticos/metabolismo , Técnicas de Tipagem Bacteriana , Burkholderiaceae/isolamento & purificação , Burkholderiaceae/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacocinética , DNA Bacteriano/análise , DNA Bacteriano/genética , Recuperação e Remediação Ambiental/métodos , Florestas , Genoma Bacteriano , Hidrocarbonetos Aromáticos/farmacocinética , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/análise , Recombinases Rec A/genética , Análise de Sequência de DNA , Microbiologia do SoloRESUMO
Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS 719 T, CBAS 732 and CBAS 720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG 9035 T, Burkholderia gladioli LMG 2216 T and Burkholderia glumae LMG 2196 T in a clade of phytopathogenic Burkholderia species. Digital DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS 719 T represents a novel species in this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, ß-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS 719 T from B. plantarii LMG 9035 T, its nearest phylogenetic neighbor. Its predominant fatty acid components were C16:0, C18:1 ω7c, cyclo-C17:0 and summed feature 3 (C16:1 ω7c and/or C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS 719 T, CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. nov. is proposed. The type strain is CBAS 719 T (= LMG 31557 T = INN12T).
Assuntos
Antibiose , Burkholderia , Ecossistema , Agaricales/efeitos dos fármacos , Agaricales/fisiologia , Antibiose/fisiologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Técnicas de Tipagem Bacteriana , Brasil , Burkholderia/química , Burkholderia/classificação , Burkholderia/genética , DNA Bacteriano/genética , Fosfolipídeos/análise , Filogenia , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologiaRESUMO
Culturomics-based bacterial diversity studies benefit from the implementation of MALDI-TOF MS to remove genomically redundant isolates from isolate collections. We previously introduced SPeDE, a novel tool designed to dereplicate spectral datasets at an infraspecific level into operational isolation units (OIUs) based on unique spectral features. However, biological and technical variation may result in methodology-induced differences in MALDI-TOF mass spectra and hence provoke the detection of genomically redundant OIUs. In the present study, we used three datasets to analyze to which extent hierarchical clustering and network analysis allowed to eliminate redundant OIUs obtained through biological and technical sample variation and to describe the diversity within a set of spectra obtained from 134 unknown soil isolates. Overall, network analysis based on unique spectral features in MALDI-TOF mass spectra enabled a superior selection of genomically diverse OIUs compared to hierarchical clustering analysis and provided a better understanding of the inter-OIU relationships.
RESUMO
Burkholderia multivorans is a member of the Burkholderia cepacia complex (Bcc), notorious for its pathogenicity in persons with cystic fibrosis. Epidemiological surveillance suggests that patients predominantly acquire B. multivorans from environmental sources, with rare cases of patient-to-patient transmission. Here we report on the genomic analysis of thirteen isolates from an endemic B. multivorans strain infecting four cystic fibrosis patients treated in different pediatric cystic fibrosis centers in Belgium, with no evidence of cross-infection. All isolates share an identical sequence type (ST-742) but whole genome analysis shows that they exhibit peculiar patterns of genomic diversity between patients. By combining short and long reads sequencing technologies, we highlight key differences in terms of small nucleotide polymorphisms indicative of low rates of adaptive evolution within patient, and well-defined, hundred kbps-long segments of high enrichment in mutations between patients. In addition, we observed large structural genomic variations amongst the isolates which revealed different plasmid contents, active roles for transposase IS3 and IS5 in the deactivation of genes, and mobile prophage elements. Our study shows limited within-patient B. multivorans evolution and high between-patient strain diversity, indicating that an environmental microdiverse reservoir must be present for this endemic strain, in which active diversification is taking place. Furthermore, our analysis also reveals a set of 30 parallel adaptations across multiple patients, indicating that the specific genomic background of a given strain may dictate the route of adaptation within the cystic fibrosis lung.
Assuntos
Infecções por Burkholderia/genética , Fibrose Cística/microbiologia , Adulto , Burkholderia , Infecções por Burkholderia/epidemiologia , Criança , Pré-Escolar , Doenças Endêmicas , Feminino , Genômica , Humanos , MasculinoRESUMO
BACKGROUND: Robot-assisted total mesorectal excision (TME) might offer benefits in less morbidity, better functional and long-term outcome over laparoscopic TME. METHODS: All consecutive patients undergoing robot-assisted TME for rectal cancer during implementation between May 2015 and December 2019 performed by five surgeons in a single centre were included. Outcomes included local recurrence rate at 3 years, conversion rate, circumferential resection margin (CRM) positivity rate, 30-day postoperative morbidity and outcomes of low anterior resection syndrome (LARS) questionnaires. RESULTS: In 105 robot-assisted TME, local recurrence rate at 3 years was 7.4%, conversion to open surgery rate was 8.6%, CRM positivity rate was 5.7%, 73.3% had good quality specimen, postoperative morbidity rate was 47.6% and anastomotic leakage rate was 9.0%. Incidence of major LARS was 55.3%. CONCLUSIONS: results of this study described acceptable morbidity, functional and long-term outcome during implementation of robotic TME for rectal cancer by multiple surgeons in a single centre.
Assuntos
Laparoscopia , Neoplasias Retais , Procedimentos Cirúrgicos Robóticos , Cirurgiões , Hospitais de Ensino , Humanos , Morbidade , Complicações Pós-Operatórias , Neoplasias Retais/cirurgia , Robótica , Síndrome , Resultado do TratamentoRESUMO
BACKGROUND: The added value of surgery in breast cancer patients with pathological complete response (pCR) after neoadjuvant systemic therapy (NST) is uncertain. The accuracy of imaging identifying pCR for omission of surgery, however, is insufficient. We investigated the accuracy of ultrasound-guided biopsies identifying breast pCR (ypT0) after NST in patients with radiological partial (rPR) or complete response (rCR) on MRI. METHODS: We performed a multicenter, prospective single-arm study in three Dutch hospitals. Patients with T1-4(N0 or N +) breast cancer with MRI rPR and enhancement ≤ 2.0 cm or MRI rCR after NST were enrolled. Eight ultrasound-guided 14-G core biopsies were obtained in the operating room before surgery close to the marker placed centrally in the tumor area at diagnosis (no attempt was made to remove the marker), and compared with the surgical specimen of the breast. Primary outcome was the false-negative rate (FNR). RESULTS: Between April 2016 and June 2019, 202 patients fulfilled eligibility criteria. Pre-surgical biopsies were obtained in 167 patients, of whom 136 had rCR and 31 had rPR on MRI. Forty-three (26%) tumors were hormone receptor (HR)-positive/HER2-negative, 64 (38%) were HER2-positive, and 60 (36%) were triple-negative. Eighty-nine patients had pCR (53%; 95% CI 45-61) and 78 had residual disease. Biopsies were false-negative in 29 (37%; 95% CI 27-49) of 78 patients. The multivariable associated with false-negative biopsies was rCR (FNR 47%; OR 9.81, 95% CI 1.72-55.89; p = 0.01); a trend was observed for HR-negative tumors (FNR 71% in HER2-positive and 55% in triple-negative tumors; OR 4.55, 95% CI 0.95-21.73; p = 0.058) and smaller pathological lesions (6 mm vs 15 mm; OR 0.93, 95% CI 0.87-1.00; p = 0.051). CONCLUSION: The MICRA trial showed that ultrasound-guided core biopsies are not accurate enough to identify breast pCR in patients with good response on MRI after NST. Therefore, breast surgery cannot safely be omitted relying on the results of core biopsies in these patients.
Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Humanos , Mastectomia , Estudos Prospectivos , Receptor ErbB-2 , Resultado do TratamentoRESUMO
During a bioprospection of bacteria with antimicrobial activity, the actinomycete strain A38T was isolated from a sediment sample of the Carpintero river located in the Gran Piedra Mountains, Santiago de Cuba province (Cuba). This strain was identified as a member of the genus Micromonospora by means of a polyphasic taxonomy study. Strain A38T was an aerobic Gram-positive filamentous bacterium that produced single spores in a well-developed vegetative mycelium. An aerial mycelium was absent. The cell wall contained meso-diaminopimelic acid and the whole-cell sugars were glucose, mannose, ribose and xylose. The major cellular fatty acids were isoC15:0, 10 methyl C17:0, anteiso-C17:0 and iso-C17:0. The predominant menaquinones were MK-10(H4) and MK-10(H6). Phylogenetic analysis of 16S rRNA gene sequences revealed that this strain was closely related to Micromonospora tulbaghiae DSM 45142T (99.5â%), Micromonospora citrea DSM 43903T (99.4â%), Micromonospora marina DSM 45555T (99.4â%), Micromonospora maritima DSM 45782T (99.3â%), Micromonospora sediminicola DSM 45794T (99.3â%), Micromonospora aurantiaca DSM 43813T (99.2â%) and Micromonospora chaiyaphumensis DSM 45246T (99.2â%). The results of OrthoANIu analysis showed the highest similarity to Micromonospora chalcea DSM 43026T (96.4â%). However, the 16S rRNA and gyrB gene sequence-based phylogeny and phenotypic characteristics provided support to distinguish strain A38T as a novel species. On the basis of the results presented here, we propose to classify strain A38T (=LMG 30467T=CECT 30034T) as the type strain of the novel species Micromonospora fluminis sp. nov.