Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 13(1): 21266, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042866

RESUMO

Genome-wide association studies have identified thousands of loci associated with common diseases and traits. However, a large fraction of heritability remains unexplained. Epigenetic modifications, such as the observed in DNA methylation have been proposed as a mechanism of intergenerational inheritance. To investigate the potential contribution of DNA methylation to the missing heritability, we analysed the methylomes of four healthy trios (two parents and one offspring) using whole genome bisulphite sequencing. Of the 1.5 million CpGs (19%) with over 20% variability between parents in at least one family and compatible with a Mendelian inheritance pattern, only 3488 CpGs (0.2%) lacked correlation with any SNP in the genome, marking them as potential sites for intergenerational epigenetic inheritance. These markers were distributed genome-wide, with some preference to be located in promoters. They displayed a bimodal distribution, being either fully methylated or unmethylated, and were often found at the boundaries of genomic regions with high/low GC content. This analysis provides a starting point for future investigations into the missing heritability of simple and complex traits.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Epigênese Genética , Genoma , Herança Multifatorial , Ilhas de CpG/genética
2.
iScience ; 26(6): 106873, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250788

RESUMO

The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.

3.
Cancer Res ; 82(8): 1492-1502, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35425963

RESUMO

Although somatic mutations in colorectal cancer are well characterized, little is known about the accumulation of cancer mutations in the normal colon before cancer. Here, we have developed and applied an ultrasensitive, single-molecule mutational test based on CRISPR-DS technology, which enables mutation detection at extremely low frequency (<0.001) in normal colon from patients with and without colorectal cancer. This testing platform revealed that normal colon from patients with and without colorectal cancer carries mutations in common colorectal cancer genes, but these mutations are more abundant in patients with cancer. Oncogenic KRAS mutations were observed in the normal colon of about one third of patients with colorectal cancer but in none of the patients without colorectal cancer. Patients with colorectal cancer also carried more TP53 mutations than patients without cancer and these mutations were more pathogenic and formed larger clones, especially in patients with early-onset colorectal cancer. Most mutations in the normal colon were different from the driver mutations in tumors, suggesting that the occurrence of independent clones with pathogenic KRAS and TP53 mutations is a common event in the colon of individuals who develop colorectal cancer. These results indicate that somatic evolution contributes to clonal expansions in the normal colon and that this process is enhanced in individuals with cancer, particularly in those with early-onset colorectal cancer. SIGNIFICANCE: This work suggests prevalent somatic evolution in the normal colon of patients with colorectal cancer, highlighting the potential of using ultrasensitive gene sequencing to predict disease risk.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genes ras , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
FEBS J ; 288(3): 902-919, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32563202

RESUMO

Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole-body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic-to-oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid ß-oxidation through activating the AMP-activated protein kinase-acetyl-CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber-type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management.


Assuntos
Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/genética , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Glicólise/genética , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução
5.
FEBS J ; 288(4): 1201-1223, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32602219

RESUMO

Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11-deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL-10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage. DATABASE: Data were deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession number GSE147423.


Assuntos
Diferenciação Celular/genética , Histona Desacetilases/genética , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Histona Desacetilases/metabolismo , Humanos , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , RNA-Seq/métodos , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia
6.
Epigenomics ; 12(18): 1593-1610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32957849

RESUMO

Aim: Gain insight about the role of DNA methylation in the malignant growth of colon cancer. Patients & methods: Methylation and gene expression from 90 adjacent-tumor paired tissues and 48 healthy tissues were analyzed. Tumor genes whose change in expression was explained by changes in methylation were identified using linear models adjusted for tumor stromal content. Results: No differences in methylation were found between adjacent and healthy tissues, but clear differences were found between adjacent and tumor samples. We identified hypermethylated CpG islands located in promoter regions that drive differential gene expression of transcription factors and their target genes. Conclusion: Changes in methylation of a few genes provoke important changes in gene expression, by expanding the signal through transcription activation/repression.


Assuntos
Neoplasias do Colo/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/metabolismo , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição/metabolismo
7.
Epigenetics ; 15(6-7): 765-779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32041475

RESUMO

Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.


Assuntos
Elementos Alu , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas Nucleares/genética , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Código das Histonas , Humanos , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Thyroid ; 28(5): 601-612, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29635968

RESUMO

BACKGROUND: Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. Unlike most cancers, its incidence has dramatically increased in the last decades mainly due to increased diagnosis of indolent PTCs. Adequate risk stratification is crucial to avoid the over-treatment of low-risk patients, as well as the under-treatment of high-risk patients, but the currently available markers are still insufficient. Kallikreins (KLKs) are emergent biomarkers in cancer, but their involvement in PTC is unknown. METHODS: This study analyzed DNA methylation (HumanMethylation arrays) and gene expression (RNA-Seq) of KLKs, BRAF and RAS mutations, and clinical data from four published thyroid cancer data sets including normal and tumor tissues (n = 73, n = 475, n = 20, and n = 82) as discovery, training, and validation series. The C4.5 classification algorithm was used to generate a decision tree. Disease-free survival was estimated using Kaplan-Meier and Cox approaches. Specific analyses were performed using real-time polymerase chain reaction and immunohistochemistry. RESULTS: The entire KLK family was deregulated in PTC, displaying a specific epigenetic and transcriptional profile strongly associated with BRAFV600E or RAS mutations. Thus, a decision-tree algorithm was developed based on three KLKs with >80% sensitivity and >95% specificity, identifying BRAF- and RAS-mutated tumors. Notably, tumors lacking these mutations were classified as BRAF- or RAS-like. Most importantly, the KLK algorithm uncovered a novel PTC subtype showing favorable prognostic features. CONCLUSIONS: The KLK algorithm could lead to a new clinically applicable strategy with important implications for the risk stratification of PTC and the management of patients.


Assuntos
Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/patologia , Adulto , Carcinoma Papilar/genética , Metilação de DNA , Análise Mutacional de DNA , Feminino , Humanos , Calicreínas/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Proteínas ras/genética
9.
Methods Mol Biol ; 1766: 123-135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29605850

RESUMO

The Cancer Genome Atlas (TCGA) epigenome data includes the DNA methylation status of tumor and normal tissues of large cohorts for dozens of cancer types. Due to the moderately large data sizes, retrieving and analyzing them requires basic programming skills. Simple data browsing (e.g., candidate gene search) is hampered by the scarcity of easy-to-use data browsers addressed to the broad community of biomedical researchers. We propose a new visualization method depicting the overall DNA methylation status at each TCGA cohort while emphasizing its heterogeneity, thus facilitating the evaluation of the cohort variability and the normal versus tumor differences. Implemented as a trackhub integrated to the University of California Santa Cruz (UCSC) genome browser, it can be easily added to any genome-wide annotation layer.To exemplify the trackhub usage we evaluate local DNA methylation boundaries, the aberrant DNA methylation of a CpG island located at the estrogen receptor 1 (ESR1) in breast and colon cancer, and the hypermethylation of the Homeobox HOXA gene cluster and the EN1 gene in multiple cancer types. The DNA methylation pancancer trackhub is freely available at http://maplab.cat/tcga_450k_trackhub .


Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , Metilação de DNA , Epigênese Genética , Genoma Humano/genética , Atlas como Assunto , Ilhas de CpG/genética , Visualização de Dados , Receptor alfa de Estrogênio/genética , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Proteínas de Homeodomínio/genética , Humanos , Família Multigênica
10.
J Clin Endocrinol Metab ; 103(2): 397-406, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165662

RESUMO

Context: Global DNA hypomethylation is a major event for the development and progression of cancer, although the significance in thyroid cancer remains unclear. Therefore, we aimed to investigate its role in thyroid cancer progression and its potential as a prognostic marker. Methods: Global hypomethylation of Alu repeats was used as a surrogate marker for DNA global hypomethylation, and was assessed using the Quantification of Unmethylated Alu technique. Mutations in BRAF and RAS were determined by Sanger sequencing. Results: Ninety primary thyroid tumors were included [28 low-risk differentiated thyroid cancer (DTC), 13 pediatric DTC, 33 distant metastatic DTC, 7 poorly differentiated thyroid cancer (PDTC), and 9 anaplastic thyroid cancer (ATC)], as well as 24 distant metastases and 20 normal thyroid tissues. An increasing hypomethylation was found for distant metastatic DTC [median, 4.0; interquartile range (IQR), 3.1 to 6.2] and PDTC/ATC (median, 9.3; IQR, 7.0 to 12.1) as compared with normal thyroid tissue (median, 2.75; IQR, 2.30 to 3.15), whereas low-risk and pediatric DTC were not affected by hypomethylation. Alu hypomethylation was similar between distant metastases and matched primary tumors. Within distant metastatic DTC, Alu hypomethylation was increased in BRAF vs RAS mutated tumors. Kaplan-Meier and Cox regression analyses showed that thyroid cancer-related and all-cause mortality were associated with tumor hypomethylation, but this association was lost after adjustment for thyroid cancer risk category. Conclusion: Distant metastatic DTC, PDTC, and ATC were increasingly affected by global Alu hypomethylation, suggesting that this epigenetic entity may be involved in thyroid cancer progression and dedifferentiation.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Metilação de DNA , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica
11.
Bioinformatics ; 33(9): 1411-1413, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453678

RESUMO

Summary: Chainy is a cross-platform web tool providing systematic pipelines and steady criteria to process real-time PCR data, including the calculation of efficiencies from raw data by kinetic methods, evaluation of the suitability of multiple references, standardized normalization using one or more references, and group-wise relative quantification statistical testing. We illustrate the utility of Chainy for differential expression and chromatin immunoprecipitation enrichment (ChIP-QPCR) analysis. Availability and Implementation: Chainy is open source and freely available at http://maplab.cat/chainy. Contact: imallona@igtp.cat. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Imunoprecipitação da Cromatina/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Software , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência
13.
BMC Genomics ; 18(1): 242, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327106

RESUMO

BACKGROUND: Genomic datasets accompanying scientific publications show a surprisingly high rate of gene name corruption. This error is generated when files and tables are imported into Microsoft Excel and certain gene symbols are automatically converted into dates. RESULTS: We have developed Truke, a fexible Web tool to detect, tag and fix, if possible, such misconversions. Aside, Truke is language and regional locale-aware, providing file format customization (decimal symbol, field sepator, etc.) following user's preferences. CONCLUSIONS: Truke is a data format conversion tool with a unique corrupted gene symbol detection utility. Truke is freely available without registration at http://maplab.cat/truke .


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Software , Navegador
14.
Genome Res ; 27(1): 118-132, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999094

RESUMO

Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.


Assuntos
Elementos Alu/genética , Neoplasias do Colo/genética , Epigênese Genética , Genoma Humano/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
15.
Brief Funct Genomics ; 15(6): 443-453, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27416614

RESUMO

DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. Recent data provide insights into the contribution of different epigenetic factors, and DNA methylation in particular, to the establishment of cellular memory during embryonic development and the modulation of cell type-specific gene regulation programs to ensure proper differentiation. This review summarizes published data regarding DNA methylation changes along lineage specification and differentiation programs. We also discuss the current knowledge about DNA methylation alterations occurring in physiological and pathological conditions such as aging and cancer.


Assuntos
Diferenciação Celular , Linhagem da Célula/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Animais , Humanos
16.
BMC Biol ; 14: 30, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27075038

RESUMO

BACKGROUND: Skeletal muscle stem cells enable the formation, growth, maintenance, and regeneration of skeletal muscle throughout life. The regeneration process is compromised in several pathological conditions, and muscle progenitors derived from pluripotent stem cells have been suggested as a potential therapeutic source for tissue replacement. DNA methylation is an important epigenetic mechanism in the setting and maintenance of cellular identity, but its role in stem cell determination towards the myogenic lineage is unknown. Here we addressed the DNA methylation dynamics of the major genes orchestrating the myogenic determination and differentiation programs in embryonic stem (ES) cells, their Pax7-induced myogenic derivatives, and muscle stem cells in proliferating and differentiating conditions. RESULTS: Our data showed a common muscle-specific DNA demethylation signature required to acquire and maintain the muscle-cell identity. This specific-DNA demethylation is Pax7-mediated, and it is a prime event in muscle stem cells gene activation. Notably, downregulation of the demethylation-related enzyme Apobec2 in ES-derived myogenic precursors reduced myogenin-associated DNA demethylation and dramatically impaired the expression of differentiation markers and, ultimately, muscle differentiation. CONCLUSIONS: Our results underscore DNA demethylation as a key mechanism driving myogenesis and identify specific Pax7-mediated DNA demethylation signatures to acquire and maintain the muscle-cell identity. Additionally, we provide a panel of epigenetic markers for the efficient and safe generation of ES- and induced pluripotent stem cell (iPS)-derived myogenic progenitors for therapeutic applications.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Células Musculares/metabolismo , Desenvolvimento Muscular , Fator de Transcrição PAX7/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Ilhas de CpG , Epigênese Genética , Humanos , Camundongos , Células Musculares/citologia , Fator de Transcrição PAX7/genética , Regiões Promotoras Genéticas
17.
J Biomed Inform ; 60: 77-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827622

RESUMO

Alu elements are the most abundant retrotransposons in the human genome with more than one million copies. Alu repeats have been reported to participate in multiple processes related with genome regulation and compartmentalization. Moreover, they have been involved in the facilitation of pathological mutations in many diseases, including cancer. The contribution of Alus and other repeats in genomic regulation is often overlooked because their study poses technical and analytical challenges hardly attainable with conventional strategies. Here we propose the integration of ontology-based semantic methods to query a knowledgebase for the human Alus. The knowledgebase for the human Alus leverages Sequence (SO) and Gene Ontologies (GO) and is devoted to address functional and genetic information in the genomic context of the Alus. For each Alu element, the closest gene and transcript are stored, as well their functional annotation according to GO, the state of the chromatin and the transcription factors binding sites inside the Alu. The model uses Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL). As a case of use and to illustrate the utility of the tool, we have evaluated the epigenetic states of Alu repeats associated with gene promoters according to their transcriptional activity. The ontology is easily extendable, offering a scaffold for the inclusion of new experimental data. The RDF/XML formalization is freely available at http://aluontology.sourceforge.net/.


Assuntos
Elementos Alu , Biologia Computacional , Ontologia Genética , Bases de Conhecimento , Cromatina/genética , Metilação de DNA , Epigênese Genética , Genoma Humano , Humanos , Regiões Promotoras Genéticas
18.
Oncotarget ; 7(9): 10536-46, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859682

RESUMO

Hypomethylation of DNA is a hallmark of cancer and its analysis as tumor biomarker has been proposed, but its determination in clinical settings is hampered by lack of standardized methodologies. Here, we present QUAlu (Quantification of Unmethylated Alu), a new technique to estimate the Percentage of UnMethylated Alu (PUMA) as a surrogate for global hypomethylation. QUAlu consists in the measurement by qPCR of Alu repeats after digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation. QUAlu performance has been evaluated for reproducibility, trueness and specificity, and validated by deep sequencing. As a proof of use, QUAlu has been applied to a broad variety of pathological examination specimens covering five cancer types. Major findings of the preliminary application of QUAlu to clinical samples include: (1) all normal tissues displayed similar PUMA; (2) tumors showed variable PUMA with the highest levels in lung and colon and the lowest in thyroid cancer; (3) stools from colon cancer patients presented higher PUMA than those from control individuals; (4) lung squamous cell carcinomas showed higher PUMA than lung adenocarcinomas, and an increasing hypomethylation trend associated with smoking habits. In conclusion, QUAlu is a simple and robust method to determine Alu hypomethylation in human biospecimens and may be easily implemented in research and clinical settings.


Assuntos
Adenocarcinoma/genética , Elementos Alu/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias do Colo/genética , Metilação de DNA/genética , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular/métodos , Neoplasias da Glândula Tireoide/genética , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Ilhas de CpG/genética , DNA/metabolismo , Células HCT116 , Humanos , Reação em Cadeia da Polimerase/métodos
19.
Bioinformatics ; 32(2): 289-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26424858

RESUMO

MOTIVATION: Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model. SUMMARY: regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions. In addition to the predefined randomization and evaluation strategies, regioneR is fully customizable allowing the use of custom strategies to adapt it to specific questions. Finally, it also implements a novel function to evaluate the local specificity of the detected association. AVAILABILITY AND IMPLEMENTATION: regioneR is an R package released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/regioneR). CONTACT: rmalinverni@carrerasresearch.org.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Software , Humanos , Anotação de Sequência Molecular , Linguagens de Programação , Análise de Sequência de DNA
20.
Clin Epigenetics ; 7: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207152

RESUMO

BACKGROUND: Misregulation of the PTGS (prostaglandin endoperoxide synthase, also known as cyclooxygenase or COX) pathway may lead to the accumulation of pro-inflammatory signals, which constitutes a hallmark of cancer. To get insight into the role of this signaling pathway in colorectal cancer (CRC), we have characterized the transcriptional and epigenetic landscapes of the PTGS pathway genes in normal and cancer cells. RESULTS: Data from four independent series of CRC patients (502 tumors including adenomas and carcinomas and 222 adjacent normal tissues) and two series of colon mucosae from 69 healthy donors have been included in the study. Gene expression was analyzed by real-time PCR and Affymetrix U219 arrays. DNA methylation was analyzed by bisulfite sequencing, dissociation curves, and HumanMethylation450K arrays. Most CRC patients show selective transcriptional deregulation of the enzymes involved in the synthesis of prostanoids and their receptors in both tumor and its adjacent mucosa. DNA methylation alterations exclusively affect the tumor tissue (both adenomas and carcinomas), redirecting the transcriptional deregulation to activation of prostaglandin E2 (PGE2) function and blockade of other biologically active prostaglandins. In particular, PTGIS, PTGER3, PTGFR, and AKR1B1 were hypermethylated in more than 40 % of all analyzed tumors. CONCLUSIONS: The transcriptional and epigenetic profiling of the PTGS pathway provides important clues on the biology of the tumor and its microenvironment. This analysis renders candidate markers with potential clinical applicability in risk assessment and early diagnosis and for the design of new therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...