Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Perfusion ; : 2676591241251438, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703045

RESUMO

BACKGROUND: Berry syndrome is a rare congenital cardiac malformation, herein we report an adult male patient who was successfully repaired by one-stage surgery. CASE DESCRIPTION: 18-year-old male patient presenting symptoms of chest tightness and shortness for over a year presented to outpatient clinic in our department to have corrective procedure heart. CTA revealed an Aortopulmonary Window (APW) type III, measuring 4.6 cm in maximum diameter. The right pulmonary artery originated from the ascending aorta, and the pulmonary trunk exhibited dilation with dimensions of 8.3 cm × 5.7 cm × 5.9 cm. Additional findings included Interrupted Aortic Arch (IAA) type A, intact ventricular septum, and Patent Ductus Arteriosus (PDA). Echocardiography showed bidirectional shunt at the level of APW in severe pulmonary hypertension. The right heart catheterization indicated a mean pulmonary artery pressure of 70mmHg and a pulmonary artery resistance of 5 Wood units. We evaluated after two weeks of treatment with epoprostenol at a rate of 20 ng/(kg. min) and found a significant improvement in pulmonary-artery pressure. Finally, we communicated with the patient's family and decided to proceed with the procedure. CONCLUSIONS: For complex cardiovascular malformations, the ideal treatment strategy must be tailored to the characteristics of the patient to provide maximum efficacy and safety.

2.
Oxid Med Cell Longev ; 2023: 3918393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819785

RESUMO

Aortic dissection (AD) develops pathological changes in the separation of the true and false aortic lumen, with high lethality. m6A methylation and oxidative stress have also been shown to be involved in the onset of AD. Through bioinformatics methods, three differentially expressed m6A regulators (YTHDC1, YTHDC2, and RBM15) were excavated from the GSE52093 dataset in the Gene Expression Omnibus (GEO) database, and functional enrichment analysis of the differentially expressed genes (DEGs) regulated by m6A regulators was performed. Then, the genes with oxidative stress-related functions among these genes were found. The protein interaction network of the oxidative stress-related genes and the competing endogenous RNA- (ceRNA-) miRNA-mRNA network were constructed. Among them, DHCR24, P4HB, and PDGFRA, which have m6A differences in AD samples, were selected as key genes. We also performed immune infiltration analysis, as well as cell-gene correlation analysis, on samples from the dataset. The results showed that YTHDC1 was positively correlated with macrophage M1 and negatively correlated with macrophage M2. Finally, we extracted AD and healthy aorta RNA and protein from human tissues that were taken from AD patients and patients who received heart transplants, performed quantitative real-time PCR (qRT-PCR) on YTHDC2 and RBM15, and performed qRT-PCR and western blot (WB) detection on YTHDC1 to verify their differences in AD. The mRNA and protein levels of YTHDC1 were consistent with the results of bioinformatics analysis and were downregulated in AD. Immunofluorescence (IF) was used to colocalize YTHDC1 and endothelial cell marker CD31. After knocking down YTHDC1 in human umbilical vein endothelial cells (HUVECs), reactive oxygen species (ROS) levels had a tendency to increase and the expression of peroxide dismutase SOD2 was decreased. This study provides assistance in discovering the role of m6A regulator YTHDC1 in AD. In particular, m6A modification participates in oxidative stress and jointly affects AD.


Assuntos
Dissecção Aórtica , MicroRNAs , Humanos , Células Endoteliais , Estresse Oxidativo , Adenosina , Fatores de Processamento de RNA , Proteínas do Tecido Nervoso
3.
J Thorac Dis ; 13(8): 5064-5076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34527344

RESUMO

BACKGROUND: Immune rejection of heart transplantation has been regarded as the biggest challenge encountered by a patient suffering from end-stage heart disease. The transplantation of human amnion-derived mesenchymal stem cells (hAD-MSCs) has exhibited promising application prospects in organ transplantation. However, its persistent unsatisfactory tolerance has limited the widespread application of this technology. We aim to investigate the role of tumor necrosis factor-α-induced protein-8 like-2 (TIPE2)-mediated hAD-MSCs in immune tolerance in heart transplantation and its molecular regulatory mechanisms. METHODS: This project detected the effect of TIPE2 on immune tolerance by constructing an allogeneic heart transplantation mouse model through which TIPE2-overexpressed hAD-MSCs were injected into recipients. The fluorescence distribution of TIPE2-hAD-MSCs in mice was observed by a small animal in vivo imaging system. Pathological changes of the transplanted heart were detected by hematoxylin and eosin (HE) staining. Flow cytometry was performed to detect the content of cardiac lymphocytes. The expression of immune-induced related factors was measured by quantitative real-time PCR (qRT-PCR) and western blot assays. RESULTS: TIPE2-hAD-MSCs protected myocardial tissue structures, reduced the spleen and thymus indexes in recipient mice, minimized the content of cardiac lymphocytes, reduced expressions of ERK, p38, and IFN-γ, and elevated expressions of both IL-10 and TGF-ß, markedly improving the survival time and survival rates of recipient mice. CONCLUSIONS: TIPE2-hAD-MSCs induce immune tolerance and improve the survival rates of allogeneic heart transplantation in mice. This study is expected to offer an ideal source and target of cells for organ transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...