Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117041, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964182

RESUMO

The modification of RNA through the N6-methyladenosine (m6A) has emerged as a growing area of research due to its regulatory role in gene expression and various biological processes regulating the expression of genes. m6A RNA methylation is a post-transcriptional modification that is dynamic and reversible and found in mRNA, tRNA, rRNA, and other non-coding RNA of most eukaryotic cells. It is executed by special proteins known as "writers," which initiate methylation; "erasers," which remove methylation; and "readers," which recognize it and regulate the expression of the gene. Modification by m6A regulates gene expression by affecting the splicing, translation, stability, and localization of mRNA. Aging causes molecular and cellular damage, which forms the basis of most age-related diseases. The decline in skeletal muscle mass and functionality because of aging leads to metabolic disorders and morbidities. The inability of aged muscles to regenerate and repair after injury poses a great challenge to the geriatric populace. This review seeks to explore the m6A epigenetic regulation in the myogenesis and regeneration processes in skeletal muscle as well as the progress made on the m6A epigenetic regulation of aging skeletal muscles.

2.
Biomed Pharmacother ; 174: 116592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615608

RESUMO

Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.


Assuntos
Epigênese Genética , Envelhecimento da Pele , Humanos , Epigênese Genética/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/genética , Animais , Pele/metabolismo , Pele/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Substâncias Protetoras/farmacologia
3.
FEBS Open Bio ; 14(6): 1011-1027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604998

RESUMO

Tumor immunotherapy can be a suitable cancer treatment option in certain instances. Here we investigated the potential immunomodulatory effect of oral glycyrrhiza polysaccharides (GCP) on the antitumor function of γδT cells in intestinal epithelial cells in mice. We found that GCP can inhibit tumor growth and was involved in the regulation of systemic immunosuppression. GCP administration also promoted the differentiation of gut epithelia γδT cells into IFN-γ-producing subtype through regulation of local cytokines in gut mucosa. GCP administration increased local cytokine levels through gut microbiota and the gut mucosa Toll-like receptors / nuclear factor kappa-B pathway. Taken together, our results suggest that GCP might be a suitable candidate for tumor immunotherapy, although further clinical research, including clinical trials, are required to validate these results.


Assuntos
Microbioma Gastrointestinal , Glycyrrhiza , NF-kappa B , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Glycyrrhiza/química , Receptores Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Antineoplásicos/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38386140

RESUMO

Glycosaminoglycan (GAG) lyases have been critical in structural and functional studies of GAGs. HCLase_M28, a lyase identified from the genome of Microbacterium sp. M28 was heterologously expressed, enzymatically characterized, and prepared in large-scale fermentation for the production of chondroitin sulfate (CS) oligosaccharides. Results showed that the expression of HCLase_M28 in Escherichia coli BL21 (DE3)-pET24a-HCLase_M28opt1 and Bacillus subtilis W800-pSTOP1622-HCLase_M28opt2 were 108-fold and 25-fold that of wide strain. The optimal lytic reaction of HCLase_M28 happened in 20 mM Tris-HCl (pH 7.2) at 50 °C with a specific activity of 190.9 U/mg toward CS-A. The degrading activity was slightly simulated in presence of 1 mM Ca2+ and Mn2+ while severely inhibited by Hg+, Cu2+, Fe3+, and SDS. TLC and ESI-MS analysis proved HCLase_M28 was an endolytic lyase and degraded CS and hyaluronic acid into unsaturated disaccharides. Through a gradual scale-up of fermentation in 5 L, 100 L, and 1000 L, a highly efficient intracellular expression of HCLase_M28 with an activity of 3.88 × 105 U/L achieved within a 34 h of cultivation. Through ultrafiltration, CS oligosaccharides with DP of 2 to 8 as the main components could be controllably prepared. The successful large-scale fermentation made HCLase_M28 a promising enzyme for industrial production of CS oligosaccharides.

5.
J Cell Mol Med ; 27(18): 2651-2660, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37614114

RESUMO

Bazi Bushen, a Chinese-patented drug with the function of relieving fatigue and delaying ageing, has been proven effective for extenuating skin senescence. To investigate the potential mechanism, senescence-accelerated mouse prone 6 (SAMP6) was intragastrically administered with Bazi Bushen for 9 weeks to induce skin homeostasis. Skin homeostasis is important in mitigating skin senescence, and it is related to many factors such as oxidative stress, SASP, apoptosis, autophagy and stem cell. In our study, skin damage in SAMP6 mice was observed using HE, Masson and SA-ß-gal staining. The content of hydroxyproline and the activities of SOD, MDA, GSH-PX and T-AOC in the skin were measured using commercial assay kits. The level of SASP factors (IL-6, IL-1ß, TNF-α, MMP2 and MMP9) in skin were measured using ELISA kits. The protein expressions of p16, p21, p53, Bax, Bcl-2, Cleaved caspase-3, LC3, p62, Beclin1, OCT4, SOX2 and NANOG were measured by western blotting. The expression of ITGA6 and COL17A1 was measured by immunofluorescence staining and western blotting. Our findings demonstrated that Bazi Bushen alleviated skin senescence by orchestrating skin homeostasis, reducing the level of oxidative stress and the expression of SASP, regulating the balance of apoptosis and autophagy and enhancing the protein expressions of ITGA6 and COL17A1 to improve skin structure in SAMP6 mice. This study indicated that Bazi Bushen could serve as a potential therapy for alleviating skin senescence.


Assuntos
Envelhecimento , Pele , Animais , Camundongos , Apoptose , Autofagia , Proteína Beclina-1
6.
J Sci Food Agric ; 103(14): 7273-7283, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37450639

RESUMO

BACKGROUND: Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related ß-galactosidase (SA-ß-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS: Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-ß-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION: Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/genética , Ecossistema , RNA Ribossômico 16S , NF-kappa B/genética , Homeostase , Transdução de Sinais , Inflamação
7.
Biomed Pharmacother ; 164: 114894, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209629

RESUMO

Postmenopausal osteoporosis is the most common type of osteoporosis. Chondroitin sulfate (CS) has been successfully employed as food supplement against osteoarthritis, while the therapeutic potential on postmenopausal osteoporosis is little explored. In this study, CS oligosaccharides (CSOs) were enzymatically prepared through the lysis of CS by a chondroitinase from Microbacterium sp. Strain. The alleviating effects of CS, CSOs and Caltrate D (a clinically used supplement) on ovariectomy (OVX) - induced rat's osteoporosis were comparatively investigated. Our data showed that the prepared CSOs was basically unsaturated CS disaccharide mixture of ∆Di4S (53.1%), ∆Di6S (27.7%) and ∆Di0S (17.7%). 12 weeks' intragastric administration of Caltrate D (250 mg/kg/d), CS or CSOs (500 mg/kg/d, 250 mg/kg/d, 125 mg/kg/d) could obviously regulate the disorder of serum indices, recover the mechanical strength and mineral content of bone, improve the cortical bones' density and the number and length of trabecular bones in OVX rats. Both CS and CSOs in 500 mg/kg/d and 250 mg/kg/d could restore more efficiently the serum indices, bone fracture deflection and femur Ca than Caltrate D. As compared with CS at the same dosage, CSOs exhibited a more significant alleviating effect. These findings suggested that there was great potential of CSOs as daily interventions for delaying the progression of postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Ratos , Animais , Sulfatos de Condroitina/uso terapêutico , Sulfatos de Condroitina/farmacologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Densidade Óssea , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Ovariectomia
8.
Cell Commun Signal ; 20(1): 178, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376959

RESUMO

BACKGROUND: Bicalutamide is a nonsteroidal antiandrogen widely used as a first-line clinical treatment for advanced prostate cancer (PCa). Although patients initially show effective responses to bicalutamide treatment, resistance to bicalutamide frequently occurs and leads to the development of castration-resistant PCa (CRPC). This research investigated the roles of the oestrogen receptor α (ERα)-nuclear factor E2-related factor 2 (NRF2) signalling pathway in bicalutamide resistance in PCa cells. METHODS: We performed bioinformatic analysis and immunohistochemical staining on normal and cancerous prostate tissue to evaluate ERα and NRF2 expression and their correlation. Gene expression and localization in PCa cell lines were further investigated using real-time reverse transcription PCR/Western blotting and immunofluorescence staining. We treated PCa cells with the ER inhibitor tamoxifen and performed luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays to understand ERα-dependent NRF2 expression. Overexpression and knockdown of ERα and NRF2 were used to explore the potential role of the ERα-NRF2 signalling axis in bicalutamide resistance in PCa cells. RESULTS: We found that the expression of ERα and NRF2 was positively correlated and was higher in human CRPC tissues than in primary PCa tissues. Treatment with oestrogen or bicalutamide increased the expression of ERα and NRF2 as well as NRF2 target genes in PCa cell lines. These effects were blocked by pretreatment with tamoxifen. ChIP assays demonstrated that ERα directly binds to the oestrogen response element (ERE) in the NRF2 promoter. This binding led to increased transcriptional activity of NRF2 in a luciferase reporter assay. Activation of the ERα-NRF2 signalling axis increased the expression of bicalutamide resistance-related genes. Inhibition of this signalling axis by knockdown of ERα or NRF2 downregulated the expression of bicalutamide resistance-related genes and inhibited the proliferation and migration of PCa cells. CONCLUSIONS: We demonstrated the transcriptional interaction between ERα and NRF2 in CRPC tissues and cell lines by showing the direct binding of ERα to the ERE in the NRF2 promoter under oestrogen treatment. Activation of the ERα-NRF2 signalling axis contributes to bicalutamide resistance in PCa cells, suggesting that the ERα-NRF2 signalling axis is a potential therapeutic target for CRPC. Video Abstract.


Assuntos
Receptor alfa de Estrogênio , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Regulação Neoplásica da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Tamoxifeno/farmacologia
9.
An Acad Bras Cienc ; 94(2): e20210938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946645

RESUMO

Triptolide is a natural active compound that has significant neuroprotective properties and shows promising effects in the treatment of Alzheimer's disease (AD). Recent studies have shown that autophagy occurs in AD. In this study, we determined whether autophagy regulated by triptolide ameliorates neuronal death caused by amyloid-Beta1-42 (Aß1-42). We examined the effects of triptolide on cell viability, autophagy, apoptosis, and the protein kinase B/mammalian target of the rapamysin/70 kDa ribosomal protein S6 kinase (Akt/mTOR/p70S6K) signaling pathway in PC12 cells. The results indicated that triptolide treatment exhibited a cytoprotective effect against cell injury induced by Aß1-42. Triptolide also reduced apoptosis and enhanced cell survival by decreasing autophagosome accumulation and inducing autophagic degradation. Furthermore, our results also showed that activating the Akt/mTOR/p70S6K mechanism was one reason for the protection of triptolide. Triptolide treatment protected against Aß1-42-induced cytotoxicity by decreasing autophagosome accumulation, and inducing autophagic degradation in PC12 cells. These findings also suggest that the reduction of autophagosome accumulation observed in triptolide-treated cells was Akt/mTOR/p70S6K pathway dependent. Overall, triptolide exhibits a neuron protective effect and this study provides new insight into AD prevention and treatment.


Assuntos
Doença de Alzheimer , Proteínas Proto-Oncogênicas c-akt , Animais , Autofagia , Diterpenos , Compostos de Epóxi , Humanos , Mamíferos , Neuroproteção , Fenantrenos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
11.
Acta Biochim Biophys Sin (Shanghai) ; 53(12): 1662-1669, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34718375

RESUMO

Lipid metabolism disorder caused by the upregulation of lipogenic genes is a typical feature of prostate cancer. The synthesis of fatty acids is enhanced to accelerate the development of prostate cancer and is considered as a potential therapeutic target. Epicatechin gallate, an active compound of green tea, has been reported to modulate lipid metabolism. In this research, the potential role of epicatechin gallate in prostate cancer cells was evaluated. The results indicated that epicatechin gallate downregulates the expression of acetyl-CoA carboxylase, ATP citrate lyase, and fatty acid synthase in prostate cancer cells and prostate xenograft tissues, suggesting that epicatechin gallate can inhibit de novo fatty acid synthesis. Moreover, epicatechin gallate significantly restrains the migration rather than the viability of prostate cancer cells. PI3K/AKT/mTOR signaling pathway, which exhibits regulatory effect on lipogenesis, is also inhibited under epicatechin gallate treatment, while pretreatment with AKT activator SC79 or mTOR activator MHY1485 blocks the inhibitory effect of epicatechin gallate on the expression of lipogenic genes and the migration of prostate cancer cells. In conclusion, this study revealed that epicatechin gallate impairs the synthesis of fatty acids via inhibition PI3K/AKT/mTOR signaling pathway and then attenuates the migration of prostate cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catequina/análogos & derivados , Movimento Celular/efeitos dos fármacos , Ácidos Graxos/biossíntese , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/antagonistas & inibidores , Humanos , Lipogênese/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Biochem ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938030

RESUMO

Cancer-associated fibroblasts (CAFs) can promote the development and metastasis of prostate cancer partly by mediating tumor-associated inflammation. An increasing amount of studies have focused on the functional interactions between CAFs and immune cells in the tumor microenvironment (TME). We previously reported that G protein-coupled receptor 30 (GPR30) was highly expressed in prostate CAFs and plays a crucial role in prostate stromal cell activation. However, the effect and underlying mechanism of GPR30 expression in prostate CAFs affecting the interaction between CAFs and tumor-associated macrophages (TAMs) need further elucidation. Here, we found that, compared with CAF-shControl, CAF-shGPR30 inhibited macrophage migration through transwell migration assays, which should be attributed to the decreased expression of C-X-C motif chemokine ligand 12 (CXCL12). In addition, macrophages treated with a culture medium of CAF-shGPR30 exhibited attenuated M2 polarization with downregulated M2-like markers expression. Moreover, macrophages stimulated with a culture medium of CAF-shGPR30 were less efficient in promoting activation of fibroblast cells and invasion of PCa cells. Finally, cocultured CAF-shGPR30 and macrophages suppressed PCa cell invasion compared to cocultured CAF-shControl and macrophages by decreasing interleukin-6 (IL-6) secretion, and this effect could be abrogated with rescue expression of IL-6. Our results pinpoint the function of GPR30 in prostate CAFs on regulating the CAF-TAM interaction in the TME and provide new insights into PCa therapies via regulating TME.

13.
Chin Herb Med ; 13(3): 410-415, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36118924

RESUMO

Objective: The aim of this study is to discover the possible working mechanisms of Ardisiae Japonicae Herba (AJH) on hepatoma carcinoma (HCC). Methods: In this study, ethanol extract of AJH was prepared and used to treat HCC cell in vitro. Furthermore, a genomic wide RNA sequencing (RNA-seq) was performed to screen deregulated genes in HCC cells after the treatment of AJH extract. The gene and protein expression related to lipid metabolism in HCC cells were also investigated to validate the results obtained from RNA-seq. Results: AJH extract could inhibit HCC cell proliferation in vitro. RNA-seq analysis has identified 1,601 differentially expressed genes (DEGs, fold change ≥ 2.0 or fold change ≤ 0.5, P < 0.05) in HCC after AJH extract treatment, which included 225 up-regulated genes and 1,376 down-regulated genes. KEGG pathway analysis of DEGs demonstrated that lipid metabolism was a potential pathway related to AJH treatment. In agreement with the RNA-seq data, qPCR and Western-blot analysis indicated that expression of genes and proteins related to lipid metabolism (SREBP1, ACC, ACLY and FASN) were significantly down-regulated in AJH treatment group as compared with the control group. Furthermore, AJH extract could also decrease lipid contents and cellular free fatty acid levels in HCC cells. Conclusion: Ethanol extract of AJH could inhibit HCC cell proliferation in vitro, the possible mechanism may be related to the inhibition of lipid metabolism.

14.
Front Pharmacol ; 11: 584090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328987

RESUMO

The dysbiosis in gut microbiota could affect host metabolism and contribute to the development of nonalcoholic fatty liver disease (NAFLD). Da-Chai-Hu decoction (DCH) has demonstrated protective effects on NAFLD, however, the exact mechanisms remain unclear. In this study, we established a NAFLD rat model using a high fat diet (HFD) and provided treatment with DCH. The changes in gut microbiota post DCH treatment were then investigated using 16S rRNA sequencing. Additionally, serum untargeted metabolomics were performed to examine the metabolic regulations of DCH on NAFLD. Our results showed that DCH treatment improved the dyslipidemia, insulin resistance (IR) and ameliorated pathological changes in NAFLD model rats. 16S rRNA sequencing and untargeted metabolomics showed significant dysfunction in gut microbiota community and serum metabolites in NAFLD model rats. DCH treatment restored the dysbiosis of gut microbiota and improved the dysfunction in serum metabolism. Correlation analysis indicated that the modulatory effects of DCH on the arachidonic acid (AA), glycine/serine/threonine, and glycerophospholipid metabolic pathways were related to alterations in the abundance of Romboutsia, Bacteroides, Lactobacillus, Akkermansia, Lachnoclostridium and Enterobacteriaceae in the gut microflora. In conclusion, our study revealed the ameliorative effects of DCH on NAFLD and indicated that DCH's function on NAFLD may link to the improvement of the dysbiosis of gut microbiota and the modulation of the AA, glycerophospholipid, and glycine/serine/threonine metabolic pathways.

15.
Biomed Pharmacother ; 121: 109552, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31715370

RESUMO

Rhodiola rosea L., a worldwide botanical adaptogen, has been confirmed to possess protective effects of inflammatory injury for many diseases, including cardiovascular diseases, neurodegenerative diseases, diabetes, sepsis, and cancer. This paper is to review the recent clinical and experimental researches about the anti-inflammatory effects and the related mechanisms of Rhodiola rosea L. extracts, preparations, and the active compounds. From the collected information reviewed, this paper will provide the theoretical basis for its clinical application, and provide the evidences or guidance for future studies and medicinal exploitations of Rhodiola rosea L.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Rhodiola/química , Animais , Anti-Inflamatórios/isolamento & purificação , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia
16.
Carbohydr Polym ; 226: 115297, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582090

RESUMO

Aiming to enhance therapeutic efficiency and reduce toxic effect of norcantharidin (NCTD), NCTD-conjugated carboxymethyl chitosan (CMCS) conjugates (CNC) were prepared and evaluated for the treatment of hepatocellular carcinoma. In vitro cellular assays revealed that CNC conjugates possessed potent inhibitory effects on the proliferation and migration of BEL-7402 cells. Besides, CNC could change nuclear morphology of tumor cells. In comparison with free NCTD at equivalent dose, CNC exerted enhanced therapeutic efficiency and diminished systemic toxicity in H22 tumor-bearing mice with a tumor inhibition rate of 56.20%. Further investigation about pharmacokinetics and tissue distribution by high performance liquid chromatography (HPLC) analysis indicated that CNC showed a longer retention time in blood circulation and reduced distribution in heart and kidney tissues, thereby exerting different antitumor efficacy and toxicity compared with free NCTD. Our results suggested that CNC conjugates based on CMCS as polymer carriers might be used as a potential clinical alternative for NCTD in tumor therapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Quitosana/análogos & derivados , Portadores de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quitosana/farmacocinética , Quitosana/farmacologia , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Camundongos
17.
Molecules ; 24(18)2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527407

RESUMO

Most growth factors are naturally occurring proteins, which are signaling molecules implicated in cellular multiple functions such as proliferation, migration and differentiation under patho/physiological conditions by interacting with cell surface receptors and other ligands in the extracellular microenvironment. Many of the growth factors are heparin-binding proteins (HBPs) that have a high affinity for cell surface heparan sulfate proteoglycans (HSPG). In the present study, we report the binding kinetics and affinity of heparin interacting with different growth factors, including fibroblast growth factor (FGF) 2,7,10, hepatocyte growth factor (HGF) and transforming growth factor (TGF ß-1), using a heparin chip. Surface plasmon resonance studies revealed that all the tested growth factors bind to heparin with high affinity (with KD ranging from ~0.1 to 59 nM) and all the interactions are oligosaccharide size dependent except those involving TGF ß-1. These heparin-binding growth factors also interact with other glycosaminoglycans (GAGs), as well as various chemically modified heparins. Other GAGs, including heparan sulfate, chondroitin sulfates A, B, C, D, E and keratan sulfate, showed different inhibition activities for the growth factor-heparin interactions. FGF2, FGF7, FGF10 and HGF bind heparin but the 2-O-sulfo and 6-O-sulfo groups on heparin have less impact on these interactions than do the N-sulfo groups. All the three sulfo groups (N-, 2-O and 6-O) on heparin are important for TGFß-1-heparin interaction.


Assuntos
Glicosaminoglicanos/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Glicosaminoglicanos/farmacologia , Heparina/química , Heparina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Cinética , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Ligação Proteica , Ressonância de Plasmônio de Superfície
18.
Mol Cell Proteomics ; 18(10): 1981-2002, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308253

RESUMO

Glycan antigens recognized by monoclonal antibodies have served as stem cell markers. To understand regulation of their biosynthesis and their roles in stem cell behavior precise assignments are required. We have applied state-of-the-art glycan array technologies to compare the glycans bound by five antibodies that recognize carbohydrates on human stem cells. These are: FC10.2, TRA-1-60, TRA-1-81, anti-i and R-10G. Microarray analyses with a panel of sequence-defined glycans corroborate that FC10.2, TRA-1-60, TRA-1-81 recognize the type 1-(Galß-3GlcNAc)-terminating backbone sequence, Galß-3GlcNAcß-3Galß-4GlcNAcß-3Galß-4GlcNAc, and anti-i, the type 2-(Galß-4GlcNAc) analog, Galß-4GlcNAcß-3Galß-4GlcNAcß-3Galß-4GlcNAc, and we determine substituents they can accommodate. They differ from R-10G, which requires sulfate. By Beam Search approach, starting with an antigen-positive keratan sulfate polysaccharide, followed by targeted iterative microarray analyses of glycan populations released with keratanases and mass spectrometric monitoring, R-10G is assigned as a mono-sulfated type 2 chain with 6-sulfation at the penultimate N-acetylglucosamine, Galß-4GlcNAc(6S)ß-3Galß-4GlcNAcß-3Galß-4GlcNAc. Microarray analyses using newly synthesized glycans corroborate the assignment of this unique determinant raising questions regarding involvement as a ligand in the stem cell niche.


Assuntos
Anticorpos Monoclonais/metabolismo , Biomarcadores/análise , Células-Tronco Embrionárias/metabolismo , Polissacarídeos/análise , Antígenos de Superfície/metabolismo , Sequência de Carboidratos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Humanos , Espectrometria de Massas , Polissacarídeos/imunologia , Análise Serial de Proteínas , Proteoglicanas/metabolismo
19.
Int J Biol Macromol ; 136: 1-12, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158420

RESUMO

Novel polymer-drug conjugates (CNC) were prepared from carboxymethyl chitosan (CMCS) and norcantharidin (NCTD) via amidation reaction and characterized by FTIR and 1H NMR spectroscopy. The aim of this study was to elucidate the antitumor efficacy of CNC on gastric cancer and the possible underlying mechanisms. The CNC conjugates possessed significant inhibitory effects on the proliferation of SGC-7901 cells and suppressed the migration as well as tube formation of HUVECs. Besides, Hoechst 33258 staining and Annexin V-FITC/PI detection suggested that the conjugates were more effective in triggering apoptosis of SGC-7901 cells compared with free NCTD. Moreover, CNC remarkably reduced systemic toxicity and enhanced the antitumor efficacy in vivo with a tumor suppression rate of 59.57% against SGC-7901 gastric tumor in BALB/c nude mice. Further investigation about the underlying mechanisms indicated that CNC could upregulate expressions of TNF-α and Bax, and downregulate expressions of VEGF, Bcl-2, MMP-2 and MMP-9, thereby inhibiting tumor metastasis and inducing apoptosis in vivo. Overall, our results demonstrated that CNC might be a promising and feasible polymer therapeutics for gastrointestinal tumor therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Quitosana/análogos & derivados , Neoplasias Gástricas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/química , Feminino , Humanos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Commun Signal ; 17(1): 50, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122254

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second leading cause of mortality and a leading cause of malignant tumors in males. Prostate cancer stem cells (PCSCs) are likely the responsible cell types for cancer initiation, clinical treatment failure, tumor relapse, and metastasis. Estrogen receptor alpha (ERα) is mainly expressed in the basal layer cells of the normal prostate gland and has key roles in coordinating stem cells to control prostate organ development. Here, we investigated the roles of the estrogen-ERα signaling pathway in regulating PCSCs. METHODS: Correlation of CD49f and ERα/NOTCH1 was analyzed in human clinical datasets and tissue samples. Flow cytometry was used to sort CD49fHi and CD49fLow cells. EZH2 recruitment by ERα and facilitation of ERα binding to the NOTCH1 promoter was validated by Co-IP and ChIP. Primary tumor growth, tumor metastasis and sensitivity to 17ß-estradiol (E2) inhibitor (tamoxifen) were evaluated in castrated mice. RESULTS: ERα expression was significantly higher in CD49fHi prostate cancer basal stem-like cells (PCBSLCs), which showed basal and EMT features with susceptibility to E2 treatment. ERα-induced estrogen effects were suggested to drive the NOTCH1 signaling pathway activity via binding to the NOTCH1 promoter. Moreover, EZH2 was recruited by ERα and acted as a cofactor to assist ERα-induced estrogen effects in regulating NOTCH1 in PCa. In vivo, E2 promoted tumor formation and metastasis, which were inhibited by tamoxifen. CONCLUSIONS: Our results implicated CD49f+/ERα + prostate cancer cells associated with basal stem-like and EMT features, named EMT-PCBSLCs, in heightened potential for promoting metastasis. NOTCH1 was regulated by E2 in CD49fHi EMT-PCBSLCs. These results contribute to insights into the metastatic mechanisms of EMT-PCBSLCs in PCa.


Assuntos
Transição Epitelial-Mesenquimal , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Próstata/metabolismo , Receptor Notch1/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Neoplasias da Próstata/patologia , Receptor Notch1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...