Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 336: 122441, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652231

RESUMO

Urban forest soils perform important ecosystem services, such as the sequestration of potentially toxic elements, but some can serve as a source for human exposure if ingested or eroded by wind. Assessment of trace elements in urban soils through traditional methods is costly but portable X-ray fluorescence (pXRF) can allow for rapid screening for hazardous concentrations. Our objectives were (1) evaluate trace elements (As, Cd, Cr, Cu, Pb, and Zn) at 460 locations in and around urban forests across three town and cities in New England and across multiple land-uses, (2) evaluate accuracy and precision of pXRF compared with traditional digestion-inductively coupled plasma analyses, (3) determine if pXRF measurements are improved by processing the soil (oven drying, rock fragment removal, and organic matter (OM) removal). Our findings show that urban forest soils have extensive Pb accumulations (42 out of 460 with >200 mg/kg), while As and Zn exceeded regulatory limits in limited outlier samples. Urban forest soils adjacent to multi-family residences have higher Pb and Zn concentrations than recreational and open lots. Fortunately, Cd, Cr, and Cu were far below hazardous concentrations. Our comparisons suggest pXRF measurements of Cu, Pb, and Zn can be considered accurate while Cd and Cr may be screened by pXRF. However, As should not be considered qualitative nor quantitative due to 70% type 1 (false positive) error on samples. While the accuracy and precision were nominally improved through soil drying, removal of rock fragments, and removal of OM (<5% decrease in relative error), our results show processing soil samples is likely not needed.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Humanos , Solo/química , Metais Pesados/análise , Oligoelementos/análise , Cidades , Cádmio/análise , Monitoramento Ambiental/métodos , Ecossistema , Chumbo/análise , Poluentes do Solo/análise , Florestas , Espectrometria de Massas
2.
Science ; 381(6655): 330-335, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471537

RESUMO

Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.

3.
J Environ Radioact ; 251-252: 106955, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772319

RESUMO

Radioactive acidic liquid waste is a common byproduct of uranium (U) and plutonium (Pu) enrichment and recycling processes whose accidental and planned release has led to a significant input of U into soils and sediments across the world, including at the U.S. DOE's Hanford site (WA, USA). Because of the particularly hazardous nature of U, it is important to predict its speciation when introduced into soils and sediments by acidic waste fluids. Of fundamental importance are the coupled effects of acid-driven mineral transformation and reactive transport on U speciation. To evaluate the effect of waste-fluid residence time and co-associated dissolved phosphate concentrations on U speciation in impacted soils and sediments, uncontaminated surface materials (from the Hanford Site) were reacted with U-containing synthetic acidic waste fluids (pH 2) amended with dissolved phosphate concentrations in both batch (no flow) and flow-through column systems for 7-365 days. By comparing dissolved U behavior and solid phase speciation as a function of flow regimen, we found that the availability of proton-promoted dissolution products (such as Si) to sequester U into uranyl silicates was dependent on waste fluid-sediment contact time as uranyl silicates were not detected in short contact time flow-through systems but were detected in no-flow, long contact time, reactors. Moreover, the dominance of uranyl phosphate as neoprecipitate U scavenger (principally in the form of meta-ankoleite) in phosphate amended systems confirmed the importance of phosphate amendments for an efficient sequestration of U in the soils and sediments. Overall, our experiments suggest that the formation of uranyl silicates in soils impacted by acidic waste fluids is likely to be limited unless reaction products are allowed to accumulate in soil pores, highlighting the importance of investigating soil U speciation in flow-through, transport-driven systems as opposed to no-flow, batch systems. This study provides insights into uranium speciation and its potential changes under acidic conditions for better prediction of risks and subsequent development of efficient remediation strategies.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Urânio , Poluentes Radioativos da Água , Fosfatos , Resíduos Radioativos/análise , Solo , Urânio/análise , Poluentes Radioativos da Água/análise
4.
J Environ Qual ; 51(3): 439-450, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35419845

RESUMO

Urban community gardens are becoming increasingly important to rehabilitate developed lands and combat the lack of access to fresh produce. Portable X-ray fluorescence (pXRF) offers a rapid, cost-effective method for assessing the elemental composition of soils but needs further study to determine its efficacy in urban agriculture. The objectives of this study were to evaluate if pXRF measurements of macronutrients (Ca, K, P), micronutrients (Cu, Mn, Zn), and toxic elements (As, Pb) generate results comparable with traditional soil analyses and if the soil measurements correlate with plant tissue concentrations at 10 community gardens across the eastern United States. From field-condition analyses of soils by pXRF and pseudototal digestions, we observed that both methods provide agreeable estimates of concentrations for some elements (Mn, Cu, Zn, Pb) but not for macronutrients (Ca, K, P). We hypothesize that low accuracy in pXRF measurements and macronutrients within silicates caused the poor agreement between the methods. Sieved and dried soil pXRF concentrations were in strong agreement with field-condition pXRF concentrations, suggesting rock removal and drying did not improve measurements. Our results highlight that pXRF can be an accurate and effective tool for screening for Mn, Cu, Zn, and Pb. Some elements, such as Pb in fruits; Mn, Cu, and Zn in leaves; and Zn and Pb in roots, could be estimated by soil pXRF or inductively coupled plasma-based analyses. Macronutrients were poorly estimated for fruits, leaves, and roots. Instead of soil concentrations, identifying genus-specific and garden-specific factors may be important for generating plant uptake predictive models.


Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental/métodos , Jardins , Chumbo/análise , Metais Pesados/análise , Nutrientes/análise , Solo , Poluentes do Solo/análise , Espectrometria por Raios X/métodos
5.
J Hazard Mater ; 416: 126240, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492991

RESUMO

Mineral dissolution and secondary phase precipitation may control the fate of inorganic contaminants introduced to soils and sediments during liquid waste discharges. When the solutions are aggressive enough to induce transformation of native minerals, incorporated contaminants may be released during dissolution due to percolation of meteoric waters. This study evaluated the release of uranium (U) from Hanford sediments that had been previously reacted for 180 or 365 days with liquid waste solutions containing U with and without 3 mM dissolved phosphate at pH 2 and 3. Flow-through column experiments were conducted under continuous saturated flow with a simulated background porewater (BPW; pH ~7) for 22 d. Up to 5% of the total U was released from the sediments reacted under PO4-free conditions, attributable to the dissolution of becquerelite and boltwoodite formed during weathering. Contrastingly, negligible U was released from PO4-reacted sediments, where meta-ankoleite was identified as the main U-mineral phase. Linear combination fits of U LIII-edge EXAFS spectra of sediments before and after BPW leaching and thermodynamic calculations suggest that the formed becquerelite and meta-ankoleite transformed into schoepite and a phosphuranylite-type phase, respectively. These results demonstrate the stabilization of U as recalcitrant uranyl minerals formed in sediments and highlight the key role of PO4 in U release at contaminated sites.


Assuntos
Urânio , Poluentes Radioativos da Água , Sedimentos Geológicos , Minerais , Fosfatos , Urânio/análise , Poluentes Radioativos da Água/análise
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33723012

RESUMO

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Assuntos
Sedimentos Geológicos/análise , Camada de Gelo/química , Dispersão Vegetal , Alumínio/análise , Berílio/análise , Fósseis , Congelamento , Sedimentos Geológicos/química , Groenlândia , Radioisótopos/análise
7.
Environ Sci Technol ; 54(10): 6031-6042, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32364719

RESUMO

Uranyl phosphate minerals represent an important secondary source of uranium release at contaminated sites. In flow-through column experiments with background porewater (BPW) of typical freshwater aquifer composition (pH 7.0, ∼0.2 mM total carbonate (TC)), dissolution of K-ankoleite (KUO2PO4·3H2O), Na-autunite (NaUO2PO4·3H2O), and Ca-autunite (Ca(UO2)2(PO4)2·6H2O) was controlled by mineral solubility at steady-state U release. Effluent concentrations indicated exchange with BPW cations, and postreaction characterization showed alteration of the initial mineral composition, changes in structure (decreased crystallinity, increased disorder, and distortion of U-P mineral sheets) and possible neoformation of phases of similar structure. Increasing the BPW pH and TC to 8.1-8.2 and 2.2-3.7 mM, respectively, resulted in mineral undersaturation and produced ca. 2 orders-of-magnitude higher U and P release without reaching steady state. Minerals incorporated less BPW cations into their structures compared to low carbonate BPW experiments but showed structural disorder and distortion. Faster dissolution rates were attributed to the formation of binary and ternary uranyl carbonate complexes that accelerate the rate-determining step of uranyl detachment from the uranyl-phosphate layered structure. Calculated dissolution rates (log Rs between -8.95 and -10.32 mol m-2 s-1), accounting for reaction and transport in porous media, were similar to dissolution rates of other classes of uranyl minerals. In undersaturated solutions, dissolution rates for uranyl phosphate, oxyhydroxide, and silicate minerals can be predicted within 1-2 orders-of-magnitude from pH ∼5-10 on the basis of pH/carbonate concentration.


Assuntos
Urânio , Poluentes Radioativos da Água/análise , Carbonatos , Concentração de Íons de Hidrogênio , Minerais , Fosfatos , Porosidade , Solubilidade , Compostos de Urânio
8.
Environ Sci Technol ; 51(19): 11011-11019, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884577

RESUMO

The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.


Assuntos
Sedimentos Geológicos/química , Minerais/química , Fosfatos/química , Resíduos Radioativos/análise , Compostos de Urânio/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Poluentes Radioativos da Água/análise , Tempo (Meteorologia)
9.
Environ Pollut ; 229: 290-299, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601018

RESUMO

Recent work identified the need for site-specific Pb bioaccessibility evaluation and scaled contaminant modeling. Pb heterogeneity has made bioaccessibility characterization difficult, and complicated distribution models. Using field testing, bioaccessibility measurement, Integrated Exposure Uptake and Biokinetic (IEUBK) modeling, and geospatial techniques, we propose a framework for conducting applied risk-based, multiscale assessment. This framework was tested and implemented in Burlington, VT, an area of old housing stock and high Pb burden (up to 15 000 mg kg-1) derived primarily from paint. After analyzing local soil samples for total and bioaccessible Pb, it was determined that bioaccessible and total Pb were well correlated in this area, through which an average bioaccessibility parameter was derived approximating Pb bioaccessibility for this soil type and Pb impact. This parameter was used with the IEUBK to recommend the local limit for residential soil Pb be reduced from 400 to 360 mg kg-1, taking into consideration the lowering of the blood lead level threshold for Pb poisoning from 10 to 5 µg dL-1 by the Centers for Disease Control (CDC). Geospatial investigation incorporated samples collected during this investigation and samples from a high school summer science academy, and relied on three techniques, used at different scales: kriging of total and background Pb alone, kriging of total and background Pb with housing age as a well-sampled, well-correlated secondary variable (cokriging), and inverse distance weighting of total and bioaccessible Pb. Modeling at different scales allowed for characterization of Pb impact at single sites as well as citywide. Model maps show positive correlation between areas of older housing and areas of high Pb burden, as well as potential at different scales for reducing the effects of Pb heterogeneity.


Assuntos
Monitoramento Ambiental/métodos , Habitação/estatística & dados numéricos , Chumbo/análise , Imagens de Satélites , Poluentes do Solo/análise , Humanos , Solo
10.
J Environ Qual ; 44(3): 945-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024274

RESUMO

At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport.

11.
Environ Sci Technol ; 49(7): 4226-34, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25741757

RESUMO

The enrichment of Cs and Rb relative to Ba, Sr, and K in three soils representing a range of soil maturities was determined to investigate the long-term sorption behavior of these elements in upland soils of the Savannah River Site (SRS). Elemental mass fractions normalized to upper continental crust (UCC) decreased in the order Cs > Rb > Ba > K > Sr in the soil fine fractions. Only the UCC-normalized amount of Cs was greater than unity. The UCC-normalized amounts in strong-acid extracts decreased as Cs > Rb > Ba > K ≈ Sr. In all three soil cores, the trends of the UCC-normalized amounts of acid-extractable metals were similar to trends of cation-exchange capacity (CEC) calculated from synchrotron-X-ray diffractometry measurements of soil mineralogy. Consequently, the relative enrichment of Cs and Rb is largely controlled by selective sorption to micaceous minerals, including hydroxy-interlayered vermiculite, that dominate the CEC. Where high clay content had caused retention of soil solution, amounts of acid extractable K, Sr, and Ba were enhanced. The retention of natural Cs by these three soils, which developed over many thousands of years, is a strong indicator that radiocesium will likewise be retained in SRS soils.


Assuntos
Silicatos de Alumínio/química , Césio/análise , Rios/química , Rubídio/análise , Poluentes Radioativos do Solo/análise , Solo/química , Radioisótopos de Césio/análise , Monitoramento de Radiação , South Carolina , Tempo (Meteorologia)
12.
Geochim Cosmochim Acta ; 141: 240-257, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197102

RESUMO

Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in the lowest pH samples, indicating its metastable persistence in these semiarid tailings. The resulting sharp geochemical speciation gradients in close proximity to the tailings surface have important implications for plant colonization, as well as mobility and bioavailability of co-associated toxic metal(loid)s.

13.
Environ Sci Technol ; 48(11): 6097-106, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24754743

RESUMO

Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge extended X-ray absorption fine structure (EXAFS) indicated that "autunite-type" sheets of meta-ankoleite transformed to "phosphuranylite-type" sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.


Assuntos
Fosfatos/química , Dióxido de Silício/química , Compostos de Urânio/química , Urânio/química , Águas Residuárias/química , Poluentes Radioativos da Água/química , Precipitação Química , Água Subterrânea/química , Resíduos Radioativos/análise , Solubilidade , Urânio/análise , Compostos de Urânio/análise , Poluentes Radioativos da Água/análise
14.
J Hazard Mater ; 197: 119-27, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21993146

RESUMO

Prior work has shown that when silicaceous sediments are infused with caustic radioactive waste, contaminant fate is tightly coupled to ensuing mineral weathering reactions. However, the effects of local aqueous geochemical conditions on these reactions are poorly studied. Thus, we varied contaminant concentration and pCO(2) during the weathering of previously uncontaminated Hanford sediments over 6 months and 1 year in a solution of caustic waste (pH 13, high ionic strength). Co-contaminants Sr, Cs and I were added at "low" (Cs/Sr: 10(-5)m; I: 10(-7)m) and "high" (Cs/Sr: 10(-3)m; I: 10(-5)m) concentrations, and headspace was held at atmospheric or undetectable (<10ppmv) CO(2) partial pressure. Solid phase characterization revealed the formation of the zeolite chabazite in "high" samples, whereas feldspathoids, sodalite and cancrinite, were formed preferentially in "low" samples. Sr, Cs and I were sequestered in all reacted sediments. Native calcite dissolution in the CO(2)-free treatment drove the formation of strätlingite (Ca(2)Al(2)SiO(7)·8H(2)O) and diminished availability of Si and Al for feldspathoid formation. Results indicate that pCO(2) and contaminant concentrations strongly affect contaminant speciation in waste-weathered sediments, and are therefore likely to impact reaction product stability under any remediation scenario.


Assuntos
Sedimentos Geológicos/química , Hidróxidos/química , Poluentes Químicos da Água/química , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Environ Sci Technol ; 45(19): 8313-20, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21859142

RESUMO

Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.


Assuntos
Césio/química , Sedimentos Geológicos/química , Estrôncio/química , Eliminação de Resíduos Líquidos , Poluentes Radioativos da Água/química , Tempo (Meteorologia) , Cátions , Concentração de Íons de Hidrogênio , Troca Iônica , Minerais/química , Modelos Químicos , Washington , Difração de Raios X
16.
Environ Sci Technol ; 44(6): 1992-7, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20170202

RESUMO

Mineral sorption/coprecipitation is thought to be a principal sequestration mechanism for radioactive (90)Sr and (137)Cs in sediments impacted by hyperalkaline, high-level radioactive waste (HLRW) at the DOE's Hanford site. However, the long-term persistence of neo-formed, contaminant bearing phases after removal of the HLRW source is unknown. We subjected pristine Hanford sediments to hyperalkaline Na-AI-NO(3)-OH solutions containing Sr, Cs, and I at 10(-5), 10(-5), and 10(-7) molal, respectively, for 182 days with either <10 ppmv or 385 ppmv pCO(2). This resulted in the formation of feldspathoid minerals. We leached these weathered sediments with dilute, neutral-pH solutions. After 500 pore volumes (PVs), effluent Sr, Cs, NO(3), Al, Si, and pH reached a steady-state with concentrations elevated above those of feedwater. Reactive transport modeling suggests that even after 500 PV, Cs desorption can be explained by ion exchange reactions, whereas Sr desorption is best described by dissolution of Sr-substituted, neo-formed minerals. While, pCO(2) had no effect on Sr or Cs sorption, sediments weathered at <10 ppmv pCO(2) did desorb more Sr (66% vs 28%) and Cs (13% vs 8%) during leaching than those weathered at 385 ppmv pCO(2). Thus, the dissolution of neo-formed aluminosilicates may represent a long-term, low-level supply of (90)Sr at the Hanford site.


Assuntos
Sedimentos Geológicos/química , Hidróxidos/química , Resíduos Radioativos/análise , Poluentes Radioativos do Solo/química , Adsorção , Radioisótopos de Césio/análise , Radioisótopos de Césio/química , Hidróxidos/análise , Cinética , Monitoramento de Radiação , Proteção Radiológica , Poluentes Radioativos do Solo/análise , Radioisótopos de Estrôncio/análise , Radioisótopos de Estrôncio/química , Tempo (Meteorologia)
17.
PLoS Genet ; 3(4): e53, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17432936

RESUMO

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments-including ground and surface waters-from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the beta-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.


Assuntos
Arsênio/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Biodegradação Ambiental , Carbono/metabolismo , Farmacorresistência Bacteriana/genética , Metabolismo Energético , Genoma Bacteriano , Metais/farmacologia , Modelos Biológicos , Oxirredução , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...