Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260362

RESUMO

In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.

2.
Nucleic Acids Res ; 50(9): 5145-5157, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524550

RESUMO

Activation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq. We found that both AID and the human APOBEC3A preferentially target tRNA genes and transcription start sites, but do not show preference for highly transcribed genes. Unlike A3A, AID did not show a strong replicative strand bias or a preference for hairpin loops. Overlapping uracilation peaks between these enzymes contained binding sites for a protein, FIS, that helps create topological domains in the E. coli genome. To confirm whether these findings were relevant to B cells, we examined mutations from lymphoma and leukemia genomes within AID-preferred sequences. These mutations also lacked replicative strand bias or a hairpin loop preference. We propose here a model for how AID avoids causing mutations in the single-stranded DNA found within replication forks.


Assuntos
Citidina Desaminase/metabolismo , Citosina/metabolismo , DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Uracila/metabolismo
3.
Nature ; 600(7888): 324-328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819670

RESUMO

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Assuntos
Linfócitos B , DNA Glicosilases , Reparo de Erro de Pareamento de DNA , Switching de Imunoglobulina , Proteínas de Membrana , Mutação , Proteínas de Neoplasias , Hipermutação Somática de Imunoglobulina , Animais , Feminino , Humanos , Camundongos , Linfócitos B/metabolismo , Sistemas CRISPR-Cas , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Epistasia Genética , Células HEK293 , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutação Somática de Imunoglobulina/genética
4.
J Biol Chem ; 294(41): 15037-15051, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431505

RESUMO

Activation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic subunit (APOBEC) enzymes convert cytosines to uracils, creating signature mutations that have been used to predict sites targeted by these enzymes. Mutation-based targeting maps are distorted by the error-prone or error-free repair of these uracils and by selection pressures. To directly map uracils created by AID/APOBEC enzymes, here we used uracil-DNA glycosylase and an alkoxyamine to covalently tag and sequence uracil-containing DNA fragments (UPD-Seq). We applied this technique to the genome of repair-defective, APOBEC3A-expressing bacterial cells and created a uracilation genome map, i.e. uracilome. The peak uracilated regions were in the 5'-ends of genes and operons mainly containing tRNA genes and a few protein-coding genes. We validated these findings through deep sequencing of pulldown regions and whole-genome sequencing of independent clones. The peaks were not correlated with high transcription rates or stable RNA:DNA hybrid formation. We defined the uracilation index (UI) as the frequency of occurrence of TT in UPD-Seq reads at different original TC dinucleotides. Genome-wide UI calculation confirmed that APOBEC3A modifies cytosines in the lagging-strand template during replication and in short hairpin loops. APOBEC3A's preference for tRNA genes was observed previously in yeast, and an analysis of human tumor sequences revealed that in tumors with a high percentage of APOBEC3 signature mutations, the frequency of tRNA gene mutations was much higher than in the rest of the genome. These results identify multiple causes underlying selection of cytosines by APOBEC3A for deamination, and demonstrate the utility of UPD-Seq.


Assuntos
Mapeamento Cromossômico , Citidina Desaminase/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genômica , Proteínas/metabolismo , Análise de Sequência de DNA , Uracila/metabolismo , Sequência de Bases , Citosina/metabolismo , Escherichia coli/genética , Humanos , Mutação , Especificidade por Substrato , Transcrição Gênica
5.
Mol Cell Biol ; 39(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348839

RESUMO

Phorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression. We tested here the possibility that induction of APOBEC3A by PMA causes genomic accumulation of uracils that may lead to such mutations. When a human keratinocyte cell line was treated with PMA, both APOBEC3A and APOBEC3B gene expression increased, anti-APOBEC3A/APOBEC3B antibody bound a protein(s) in the nucleus, and nuclear extracts displayed cytosine deamination activity. Surprisingly, there was little increase in genomic uracils in PMA-treated wild-type or uracil repair-defective cells. In contrast, cells transfected with a plasmid expressing APOBEC3A acquired more genomic uracils. Unexpectedly, PMA treatment, but not APOBEC3A plasmid transfection, caused a cessation in cell growth. Hence, a reduction in single-stranded DNA at replication forks may explain the inability of PMA-induced APOBEC3A/APOBEC3B to increase genomic uracils. These results suggest that the proinflammatory PMA is unlikely to promote extensive APOBEC3A/APOBEC3B-mediated cytosine deaminations in human keratinocytes.


Assuntos
Citidina Desaminase/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Proteínas/efeitos dos fármacos , Uracila/metabolismo , Carcinógenos/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Citosina/metabolismo , DNA de Cadeia Simples/efeitos dos fármacos , Genômica , Humanos , Queratinócitos/metabolismo , Mutagênese/efeitos dos fármacos , Neoplasias/genética
6.
PLoS One ; 12(9): e0185010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926604

RESUMO

Most B cell cancers overexpress the enzyme activation-induced deaminase at high levels and this enzyme converts cytosines in DNA to uracil. The constitutive expression of this enzyme in these cells greatly increases the uracil content of their genomes. We show here that these genomes also contain high levels of abasic sites presumably created during the repair of uracils through base-excision repair. We further show that three alkoxyamines with an alkyne functional group covalently link to abasic sites in DNA and kill immortalized cell lines created from B cell lymphomas, but not other cancers. They also do not kill normal B cells. Treatment of cancer cells with one of these chemicals causes strand breaks, and the sensitivity of the cells to this chemical depends on the ability of the cells to go through the S phase. However, other alkoxyamines that also link to abasic sites- but lack the alkyne functionality- do not kill cells from B cell lymphomas. This shows that the ability of alkoxyamines to covalently link to abasic sites is insufficient for their cytotoxicity and that the alkyne functionality may play a role in it. These chemicals violate the commonly accepted bioorthogonality of alkynes and are attractive prototypes for anti-B cell cancer agents.


Assuntos
Aminas/farmacologia , Linfócitos B/efeitos dos fármacos , DNA/metabolismo , Aminas/química , Antineoplásicos/farmacologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/química , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Células HEK293 , Células HeLa , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...