Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958378

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

2.
Front Immunol ; 12: 752394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737751

RESUMO

FOXP3 is the master transcription factor in both murine and human FOXP3+ regulatory T cells (Tregs), a T-cell subset with a central role in controlling immune responses. Loss of the functional Foxp3 protein in scurfy mice leads to acute early-onset lethal lymphoproliferation. Similarly, pathogenic FOXP3 mutations in humans lead to immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which are characterized by systemic autoimmunity that typically begins in the first year of life. However, although pathogenic FOXP3 mutations lead to overlapping phenotypic consequences in both systems, FOXP3 in human Tregs, but not mouse, is expressed as two predominant isoforms, the full length (FOXP3FL) and the alternatively spliced isoform, delta 2 (FOXP3Δ2). Here, using CRISPR/Cas9 to generate FOXP3 knockout CD4+ T cells (FOXP3KOGFP CD4+ T cells), we restore the expression of each isoform by lentiviral gene transfer to delineate their functional roles in human Tregs. When compared to FOXP3FL or FOXP3Δ2 alone, or double transduction of the same isoform, co-expression of FOXP3FL and FOXP3Δ2 induced the highest overall FOXP3 protein expression in FOXP3KOGFP CD4+ T cells. This condition, in turn, led to optimal acquisition of Treg-like cell phenotypes including downregulation of cytokines, such as IL-17, and increased suppressive function. Our data confirm that co-expression of FOXP3FL and FOXP3Δ2 leads to optimal Treg-like cell function and supports the need to maintain the expression of both when engineering therapeutics designed to restore FOXP3 function in otherwise deficient cells.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Técnicas de Inativação de Genes , Humanos , Fenótipo , Isoformas de Proteínas/imunologia
3.
4.
PLoS Genet ; 15(8): e1008249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437148

RESUMO

Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.


Assuntos
Processamento Alternativo , Evolução Molecular , Genoma Fúngico , Íntrons/genética , Saccharomyces cerevisiae/genética , RNA não Traduzido/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo
5.
J Biomol Screen ; 18(9): 1110-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771823

RESUMO

The spliceosome is the macromolecular machine responsible for pre-mRNA splicing, an essential step in eukaryotic gene expression. During splicing, myriad subunits join and leave the spliceosome as it works on the pre-mRNA substrate. Strikingly, there are very few small molecules known to interact with the spliceosome. Splicing inhibitors are needed to capture transient spliceosome conformations and probe important functional components. Such compounds may also have chemotherapeutic applications, as links between splicing and cancer are increasingly uncovered. To identify new splicing inhibitors, we developed a high-throughput assay for in vitro splicing using a reverse transcription followed by quantitative PCR readout. In a pilot screen of 3080 compounds, we identified three small molecules that inhibit splicing in HeLa extract by interfering with different stages of human spliceosome assembly. Two of the compounds similarly affect spliceosomes in yeast extracts, suggesting selective targeting of conserved components. By examining related molecules, we identified chemical features required for the activity of two of the splicing inhibitors. In addition to verifying our assay procedure and paving the way to larger screens, these studies establish new compounds as chemical probes for investigating the splicing machinery.


Assuntos
Ensaios de Triagem em Larga Escala , Precursores de RNA/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Spliceossomos/efeitos dos fármacos , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Precursores de RNA/química , Precursores de RNA/metabolismo , Transcrição Reversa , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Spliceossomos/química , Spliceossomos/metabolismo , Relação Estrutura-Atividade
6.
RNA ; 19(5): 627-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525800

RESUMO

Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.


Assuntos
Diferenciação Celular/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Splicing de RNA/genética , Proteínas de Ligação a RNA , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Células Cultivadas , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células HeLa , Humanos , Íntrons , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Especificidade de Órgãos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Mol Cell ; 38(3): 416-27, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20471947

RESUMO

U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here, we identify a U2 snRNA structure, the branchpoint-interacting stem loop (BSL), which presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests that it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing.


Assuntos
Regulação Fúngica da Expressão Gênica , Íntrons , Splicing de RNA , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Spliceossomos/metabolismo , Leveduras/genética , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Evolução Molecular , Proteínas Fúngicas/metabolismo , Genótipo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fenótipo , Precursores de RNA/metabolismo , RNA Fúngico/química , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/química , Relação Estrutura-Atividade , Leveduras/metabolismo
9.
Genes Dev ; 21(7): 811-20, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17403781

RESUMO

Nuclear pre-messenger RNA (pre-mRNA) splicing requires multiple spliceosomal small nuclear RNA (snRNA) and pre-mRNA rearrangements. Here we reveal a new snRNA conformational switch in which successive roles for two competing U2 helices, stem IIa and stem IIc, promote distinct splicing steps. When stem IIa is stabilized by loss of stem IIc, rapid ATP-independent and Cus2p-insensitive prespliceosome formation occurs. In contrast, hyperstabilized stem IIc improves the first splicing step on aberrant branchpoint pre-mRNAs and rescues temperature-sensitive U6-U57C, a U6 mutation that also suppresses first-step splicing defects of branchpoint mutations. A second, later role for stem IIa is revealed by its suppression of a cold-sensitive allele of the second-step splicing factor PRP16. Our data expose a spliceosomal progression cycle of U2 stem IIa formation, disruption by stem IIc, and then reformation of stem IIa before the second catalytic step. We propose that the competing stem IIa and stem IIc helices are key spliceosomal RNA elements that optimize juxtaposition of the proper reactive sites during splicing.


Assuntos
Splicing de RNA , RNA Nuclear Pequeno/química , Spliceossomos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Catálise , RNA Helicases DEAD-box/metabolismo , Modelos Biológicos , Mutação , Conformação de Ácido Nucleico , Fenótipo , RNA Helicases , Precursores de RNA/metabolismo , Fatores de Processamento de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Transativadores/metabolismo
10.
Proc Natl Acad Sci U S A ; 100(24): 13857-62, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14610285

RESUMO

Stable addition of U2 small nuclear ribonucleoprotein (snRNP) to form the prespliceosome is the first ATP-dependent step in splicing, and it requires the DEXD/H box ATPase Prp5p. However, prespliceosome formation occurs without ATP in extracts lacking the U2 snRNP protein Cus2p. Here we show that Prp5p is required for the ATP-independent prespliceosome assembly that occurs in the absence of Cus2p. Addition of recombinant Cus2p can restore the ATP dependence of prespliceosome assembly, but only if it is added before Prp5p. Prp5p with an altered ATP-binding domain (Prp5-GNTp) can support growth in vivo, but only in a cus2 deletion strain, mirroring the in vitro results. Other Prp5 ATP-binding domain substitutions are lethal, even in the cus2 deletion strain, but can be suppressed by U2 small nuclear RNA mutations that hyperstabilize U2 stem IIa. We infer that the presence of Cus2p and stem IIa-destabilized forms of U2 small nuclear RNA places high demands on the ATP-driven function of Prp5p. Because Prp5p is not dispensable in vitro even in the absence of ATP, we propose that the core Prp5p function in bringing U2 to the branchpoint is not directly ATP-dependent. The positive role of Cus2p in rescuing mutant U2 can be reconciled with its antagonistic effect on Prp5 function in a model whereby Cus2p first helps Prp5p to activate the U2 snRNP for prespliceosome formation but then is displaced by Prp5p before or during the stabilization of U2 at the branchpoint.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Sequência de Bases , Sítios de Ligação , RNA Helicases DEAD-box , Genes Fúngicos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , Splicing de RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Transativadores/química , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...