Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 86(7): 100096, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100391

RESUMO

Bacteria including Vibrio spp. persist in coastal waters and can contaminate edible seaweeds. Pathogens such as Listeria monocytogenes, shigatoxigenic Escherichia coli (STEC), and Salmonella have been associated with and present serious health risks in minimally processed vegetables including seaweeds. This study evaluated the survival of four pathogens inoculated onto two product forms of sugar kelp subjected to different storage temperatures. The inoculation comprised of a cocktail of two Listeria monocytogenes and STEC strains, two Salmonella serovars, and two Vibrio species. STEC and Vibrio were grown and applied in salt-containing media to simulate preharvest contamination, whereas L. monocytogenes and Salmonella inocula were prepared to simulate postharvest contamination. Samples were stored at 4°C and 10°C for 7 days, and 22°C for 8 h. Microbiological analyses were performed periodically (1, 4, 8, 24 h, etc.) to evaluate the effects of storage temperature on pathogen survival. Pathogen populations decreased under all storage conditions, but survival was greatest for all species at 22°C, with STEC exhibiting significantly less reduction (1.8 log CFU/g) than Salmonella, L. monocytogenes, and Vibrio (3.1, 2.7, and 2.7 log CFU/g, respectively) after storage. The largest population reduction (5.3 log CFU/g) was observed in Vibrio stored at 4°C for 7 days. Regardless of storage temperature, all pathogens remained detectable at the end of the study duration. Results emphasize the need for strict adherence to temperature control for kelp as temperature abuse may support pathogen survival, especially STEC, during storage, and the need for prevention of postharvest contamination, particularly with Salmonella.


Assuntos
Escherichia coli O157 , Kelp , Listeria monocytogenes , Alga Marinha , Escherichia coli Shiga Toxigênica , Açúcares , Verduras , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Salmonella , Temperatura
2.
Foods ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681308

RESUMO

Low seaweed consumption in the West is due to lack of availability and consumer familiarity. In this study, the effects of preservation processes on quality aspects of Saccharina latissima products were assessed. First, a blanching (100 °C for 1 or 3 min) treatment was used to produce seaweed salad. In a second study, effects of blanching, freezing, and fermentation on kelp quality were assessed and processed kelp was used to produce sauerkraut. Blanching significantly decreased (p ≤ 0.05) the instrumental kelp a* value and firmness. The a* value negatively correlated with overall liking of salads. To prepare sauerkraut, raw, raw/frozen (-20 °C), blanched (100 °C, 1 min), or blanched/frozen kelp were mixed with cabbage, salted, inoculated with starter cultures and fermented. Inconsistent trends in L* values, firmness, and fungi enumeration were observed after fermentation. Consumers evaluated kelp salad (n = 100) and sauerkraut (n = 80) for acceptability. Blanched kelp salad had higher hedonic scores than raw kelp salad. A 100% cabbage sauerkraut control and blanched kelp/cabbage blends were compared; kelp blends were similar to control for appearance, color, and texture but were lower for overall acceptability. Results suggest improved quality and enhanced consumer acceptability of seaweed products with use of minimal processing.

3.
Foods ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805033

RESUMO

To control the population of an invasive species of green crab, we investigated the feasibility of producing a fermented crab condiment. Commercial fermented fish condiments were tested to assess variability in the marketplace and to identify targets for lab-fermented sauces. Finely chopped crab was combined with 100 mg g-1, 200 mg g-1, or 300 mg g-1 NaCl, and spontaneously fermented for up to 120 days. Chromatographic analysis revealed that histamine content was not a safety concern as all treatments were below the current U.S. legal threshold (50 mg 100 mL-1). The majority of microbial and physicochemical properties measured within salt level (proteolytic bacterial population, total volatile basic nitrogen (TVBN), amine nitrogen, water activity, moisture, and biogenic amines) were statistically unchanged between days 60 and 120 of fermentation, suggesting that most of the biochemical changes happened early in the fermentation. While the production of a fermented condiment was successful and could represent an opportunity for the valorization of this invasive species, additional work is needed to accelerate the process and further understand the dynamics of the early fermentation stages.

4.
J Sci Food Agric ; 101(4): 1403-1410, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833277

RESUMO

BACKGROUND: Most hydroponic lettuce growers harvest and package their marketable-size lettuces with an intact root ball. With a high microbial load on the peat moss substrate, there is a risk of microbial transfer onto the edible portion during packaging and throughout the product's shelf life. Since the produce is believed to have no contact with the substrate, no sanitizer wash is performed before packaging and storage. RESULTS: Aerobic plate count (APC) results suggested that reduction in count was influenced by both sanitizer application and storage time. Peroxyacetic acid significantly reduced APC count on leaves, roots, and substrate, with a 1.8 log CFU g-1 initial reduction on the leaf. Fungi and APC levels increased with storage time, with the greatest APC increase in the roots. Leaves had the lowest coliform bacteria (CB), with chlorine slightly reducing CB count. Unlike APC, CB levels decreased during storage on the substrate and root samples. No Listeria positive was confirmed by agglutination test. Further evaluation of different commercial substrates reveals that Com4, a drier-compacted plug, had the least ability to support growth/survival of all microbial populations enumerated relative to the spongy, wet black plugs. CONCLUSION: The ability of peat moss substrates to host microorganisms is influenced by the physical properties of the product. Sanitizer wash efficacy is dependent on the initial microbial load and the length of storage. Chlorine and peroxyacetic acid are effective in reducing microbial populations on the leaves of hydroponically grown lettuce without affecting visual quality during shelf life. © 2020 Society of Chemical Industry.


Assuntos
Bactérias/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Fungos/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Ácido Peracético/farmacologia , Folhas de Planta/microbiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Desinfecção , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Fungos/classificação , Fungos/crescimento & desenvolvimento , Hidroponia , Lactuca/química , Lactuca/microbiologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
5.
Int J Food Microbiol ; 297: 21-26, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30856385

RESUMO

The feasibility of using gaseous ozone, alone or in combination with other treatments, to decontaminate in-shell almonds and pistachios, prepared under different pathogen-inoculation conditions, was explored. Nuts were inoculated with either Salmonella enterica serovar Enteritidis or a potential Salmonella surrogate, Enterococcus faecium OSY 31284. The effect of inoculation method (with or without vacuum application), and of drying inoculated nuts (up to three days) on treatment efficacy was investigated. Inoculated nuts were subjected to gaseous ozone alone (almonds, pistachios) or ozone in combination with heating in brine solution (pistachios). Ozone treatment included application of vacuum (10 in Hg), followed by vessel pressurization to 12.5 psig with ozone­oxygen mixture (160 g ozone/m3 gas mixture) and holding for 30 min. Heating was conducted in a brine solution (5% NaCl) at 70 °C, for 10 min. Ozone-based treatments were significantly more effective (P < 0.05) on almonds than pistachios, with maximum S. Enteritidis reduction of 2.9 vs. 0.8 log CFU/g, regardless of inoculation method or the drying time. Treatment of inoculated pistachios with heated brine and gaseous ozone reduced S. Enteritidis population by 5.0 to 7.0 log CFU/g and was not significantly more effective than treatment with heated brine alone (reduction of 4.8 to 7.1 log CFU/g). Application of vacuum during inoculation increased bacterial population on nut kernels by approximately 1.2 log CFU/g, but the increase in inoculum population had no effect on inactivation of either species of inoculated bacteria. Decontamination treatments were less effective against both bacteria by up to 2 log CFU/g when drying time of inoculated nuts increased. E. faecium was significantly more resistant to heat and ozone treatment (P < 0.05) than was S. Enteritidis on pistachios, but not on almonds. Results of this study show that laboratory methodology affects observed treatment effectiveness. Considering its high resistance to the heat-ozone combination, E. faecium may not be a suitable surrogate for S. Enteritidis during processing of pistachios by this treatment. Efficacy of ozone gas to decontaminate S. Enteritidis-inoculated nuts depends heavily on the type of nut. Although reductions of S. Enteritidis populations on in-shell pistachios are low, treatment of in-shell almonds resulted in greater reductions, indicating the promise of this technology to enhance the safety of specific nut products.


Assuntos
Microbiologia de Alimentos/métodos , Viabilidade Microbiana , Nozes/microbiologia , Ozônio/química , Salmonella enterica/fisiologia , Contagem de Colônia Microbiana , Temperatura Alta , Pistacia/microbiologia , Prunus dulcis/microbiologia
6.
Int J Food Microbiol ; 236: 90-7, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27454784

RESUMO

Bacteriophages are potentially useful in controlling foodborne pathogens on minimally processed products since phage application is a non-destructive treatment. The purpose of this study was to evaluate the efficacy of a newly isolated environmental bacteriophage against enterohemorrhagic Escherichia coli on fresh produce, and optimize the treatment with consideration for potential application. Seven anti E. coli O157:H7 EDL933 bacteriophages were isolated from various sources; the most promising was isolated from municipal wastewater. This isolate (designated as E. coli phage OSY-SP) was propagated with the host, in a growth medium, to a titer of 10(8) PFU/ml. Before inoculation into fresh produce, E. coli phage OSY-SP was incubated with the host bacterium, spent medium was filter-sterilized, and the resulting crude lysate was used as a source of phage inocula for preliminary experiments. For optimized testing, phage in the crude lysate was purified by ultra-centrifugation and resuspension in phosphate-buffered saline. Efficacy of phage treatments was determined as a function of fresh produce type (cut green pepper or spinach leaves), treatment time (2 or 5min rinsing), and temperature of holding treated produce (4°C, 25°, or a combination of both temperatures). Cut green pepper was treated with UV light, to eliminate background microbiota, then spot-inoculated with E. coli O157:H7 EDL933 on cut edges, and the inoculum was allowed to dry. Because of its susceptibility to damage, baby spinach leaves were not subjected to a decontamination treatment. These leaves were inoculated with the green fluorescent protein-labeled E. coli O157:H7 B6-914 to facilitate inoculum enumeration in the presence of background microbiota. Phage suspension was applied to the inoculated fresh produce that was subsequently held for three days under variable storage conditions. The optimized phage treatment decreased the populations of pathogenic E. coli by 2.4-3.0logCFU/g on cut green pepper (5-min rinse) and 3.4-3.5logCFU/g on spinach leaves (2-min rinse), during 72h storage. The majority of this decline was caused by the antimicrobial action of the phage. These findings suggest the utility of bacteriophage to selectively control pathogens on fresh produce.


Assuntos
Colífagos/fisiologia , Escherichia coli O157/virologia , Contaminação de Alimentos/prevenção & controle , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Humanos , Folhas de Planta/microbiologia , Spinacia oleracea/microbiologia , Temperatura , Verduras/microbiologia
7.
Food Sci Nutr ; 2(5): 578-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25473516

RESUMO

Raw eggs are a potential health hazard and a new federally approved process uses ozone to maintain freshness while ensuring safety. The impact of an ozone process on the flavor, color, and shell integrity of eggs must be known for market acceptance. The visual perception and consumer acceptance of full commercial scale ozone-pasteurized eggs are reported, using a degree of liking test and a Just-About-Right analysis. Instrumental analysis of albumen turbidity, yolk color, and Haugh Units correlate with human perception. Visual tests reveal that ozone-pasteurized eggs were equivalent to thermally pasteurized eggs in attributes such as appearance, spread, and cloudiness. They were equivalent to untreated eggs in yolk height, yellowness, and appeal. There were no differences in taste among all egg treatments for measures of aroma, flavor, texture and overall liking. Ozone-pasteurized eggs have the same appeal as raw eggs, and can be cooked without flavor loss. This promising new ozone process maintains good sensory quality relative to thermal processing.

8.
J Food Sci ; 79(8): S1584-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25039435

RESUMO

Peanut safety and quality were evaluated for different roasting technologies. Shelled raw peanuts were roasted using an oven at 163 to 204 °C, microwave, or oven and microwave combinations. The lethal effect of these treatments was investigated on peanuts inoculated with the Salmonella surrogate, Enterococcus faecium and stored at room temperature for 1 h, 24 h, or 7 d before roasting. Roasted peanut color, odor activity values (OAVs), descriptive sensory panel analysis, free fatty acid, and peroxide values were determined. Color and OAVs were also analyzed on 2 commercial peanut butters. OAVs were calculated using volatile levels quantified with selected ion flow tube mass spectrometry and known odor thresholds. All treatments resulted in a minimum of 3 log reduction of inoculated bacterial population. Resistance to the process was not influenced by storage of inoculated peanuts prior to treatment. Roasting by different methods produced equivalent, commercially ideal L* color. Based on the OAVs, treatments had similar volatiles important to flavor compared to the commercial samples. Descriptive sensory analysis showed no significant difference between the roasting treatments for most of the sensory attributes. Lipid oxidation was not significantly different between the roasting methods, displaying no evidence that roasting time or temperature affected lipid oxidation, when ideal color was produced. These results suggest that oven, microwave, or combination roasting should be sufficient to mitigate the threat of Salmonella contamination and produce similar color, OAVs, sensory attributes, and lipid oxidation results.


Assuntos
Arachis/química , Enterococcus faecium/isolamento & purificação , Manipulação de Alimentos/métodos , Metabolismo dos Lipídeos/fisiologia , Salmonella/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Arachis/microbiologia , Contagem de Colônia Microbiana , Cor , Enterococcus faecium/crescimento & desenvolvimento , Ácidos Graxos não Esterificados/análise , Aromatizantes/análise , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Espectrometria de Massas , Micro-Ondas , Odorantes/análise , Salmonella/crescimento & desenvolvimento , Paladar
9.
J Food Prot ; 77(6): 914-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24853512

RESUMO

The purpose of this study was to investigate the effect of osmotic shock and adaptation at low water activity (aw) and the type of humectant used to lower the aw, on heat resistance of three Salmonella enterica serovars (Saintpaul 02-109, Tennessee 2053H, and Elmsbuettel 1236H). The serovars were grown (adapted) or transferred (osmotic shocked) in low-aw broths and subjected to heat treatment at 55°C for up to 45 min; samples were removed at 5-min intervals and immediately placed in an ice-water bath until plating. The aw of tryptic soy broth (TSB) was lowered by the addition of 20% (wt/wt) glycerol (aw 0.94), 4% (wt/wt) sodium chloride (NaCl; aw 0.97), or 35% sucrose (wt/wt) (aw 0.95). The type of humectant and cell adaptation significantly affected the D55°C-value. Cells merely suspended in 20% glycerol broth (i.e., nonadapted) prior to heat treatment showed a larger D55°C-value (3.0 to 3.9 min), when compared with that of cells adapted in the same medium (D55°C-values of 0.86 to 0.98 min). Interestingly, cells adapted to TSB plus glycerol were not more resistant to heat than were the controls. NaCl and sucrose showed a net protective effect for all serovars under both the adapted and nonadapted conditions, with sucrose providing the most protection. Highest D55°C-values were obtained for cultures adapted to TSB plus sucrose. Based on these results, the effect of reduced aw on thermal resistance of Salmonella serovars varies greatly, depending on medium constituents and adaptation of the pathogen in these media.


Assuntos
Higroscópicos/farmacologia , Salmonella enterica/química , Salmonella enterica/efeitos dos fármacos , Água/análise , Adaptação Fisiológica , Meios de Cultura/química , Temperatura Alta , Pressão Osmótica , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/fisiologia , Cloreto de Sódio/farmacologia , Tennessee
10.
J Food Prot ; 76(2): 213-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23433367

RESUMO

Infection of laying hens with Salmonella enterica serovar Enteritidis leads to deposition of the pathogen into the albumen or yolk of forming eggs. Heat treatment can inactivate internalized Salmonella Enteritidis in shell eggs, but factors such as the nature and location of contamination may influence the efficacy of thermal treatments. In the current research, natural contamination was mimicked by introducing small inocula of Salmonella Enteritidis into different locations of shell eggs and incubating inoculated eggs. These pathogen-containing eggs were heated at 57°C for 40 min, and temperature within eggs was monitored at the locations of inocula. Comparison of inactivation at equivalent internal temperatures revealed similar levels of lethality regardless of inoculum location. Refrigeration between incubation and heat treatment did not increase thermal resistance of cells in albumen but decreased cell inactivation in yolk. Sequential application of heat and gaseous ozone allows for the development of a process capable of decontaminating shell eggs with minimal thermal treatment and impact on egg quality. Inoculated eggs were subjected to (i) an immersion heating process similar to that used in commercial pasteurization or (ii) immersion heating, at reduced duration, followed by vacuum (50.8 kPa) and treatment with ozone gas (maximum 160 g/m(3)) under pressure (∼187.5 kPa). All treatments tested produced greater than 5-log inactivation, which is required for "pasteurization" processes. Differences were observed in the visual quality of eggs depending on treatment parameters. Application of ozone subsequent to heating allows for a significant reduction in heating time without decreasing process lethality.


Assuntos
Ovos/microbiologia , Ozônio/farmacologia , Pasteurização/métodos , Salmonella enteritidis/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Casca de Ovo/microbiologia , Ovos/normas , Microbiologia de Alimentos , Temperatura
11.
Adv Appl Microbiol ; 81: 243-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22958532

RESUMO

The issue of egg contamination with Salmonella enterica serovar Enteritidis rose to prominence several decades ago with increasing rate of infection around the world. Recent outbreaks have assured that this problem maintains a place in the public consciousness. Extensive research has been conducted to investigate the factors precipitating contamination events, their avoidance, and mitigation of the threat of contaminated eggs; consequently, regulations have been put in place to increase the safety of shell eggs. Despite these measures, rate of illness remains significantly higher than projected goals. This chapter includes information regarding the contraction of Salmonella species by laying hens and the subsequent deposition of these cells in shell eggs. Particular attention will be given to the prevalence of Salmonella Enteritidis in eggs and egg-containing products relative to other salmonellae. Research has been conducted to elucidate the mechanisms behind the fitness of Salmonella Enteritidis strains for this environment, but a consensus has yet to be reached. Novel methods of sanitizing shell eggs also are reviewed.


Assuntos
Galinhas , Salmonella enteritidis , Animais , Casca de Ovo , Ovos , Salmonelose Animal
12.
Annu Rev Food Sci Technol ; 2: 281-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22129384

RESUMO

Popular foods such as fresh produce and dry nuts are increasingly implicated in outbreaks of food-transmitted diseases. These products are not amenable to conventional processing technologies; therefore, many alternative decontamination methods are actively investigated. Ozone is a versatile sanitizer with promising applications in some high-risk foods. This antimicrobial agent is active against a broad spectrum of microorganisms, and it can be used effectively in its gaseous or aqueous state. The flexibility afforded by ozone use makes it a viable option for application on easy-to-damage products like fresh produce. If process parameters are adequately controlled, ozone treatment can enhance safety and increase shelf life without adversely affecting product quality. Despite these advantages, ozone may not be suitable for some applications, including treatment of liquid foods and products rich in unsaturated fats and soluble proteins. Ozone, as a powerful oxidizer, must be carefully controlled at all times, and equipment must be rigorously maintained to ensure safety of workers.


Assuntos
Anti-Infecciosos/farmacologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Oxidantes/farmacologia , Ozônio/farmacologia , Anti-Infecciosos/efeitos adversos , Descontaminação/métodos , Conservação de Alimentos/instrumentação , Doenças Transmitidas por Alimentos/prevenção & controle , Frutas/microbiologia , Nozes/microbiologia , Oxidantes/efeitos adversos , Ozônio/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...