Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39272760

RESUMO

In time-of-flight positron emission tomography (TOF-PET), a coincidence time resolution (CTR) below 100 ps reduces the angular coverage requirements and, thus, the geometric constraints of the scanner design. Among other possibilities, this opens the possibility of using flat-panel PET detectors. Such a design would be more cost-accessible and compact and allow for a higher degree of modularity than a conventional ring scanner. However, achieving adequate CTR is a considerable challenge and requires improvements at every level of detection. Based on recent results in the ongoing development of optimised TOF-PET photodetectors and electronics, we expect that within a few years, a CTR of about 75 ps will be be achievable at the system level. In this work, flat-panel scanners with four panels and various design parameters were simulated, assessed and compared to a reference scanner based on the Siemens Biograph Vision using NEMA NU 2-2018 metrics. Point sources were also simulated, and a method for evaluating spatial resolution that is more appropriate for flat-panel geometry is presented. We also studied the effects of crystal readout strategies, comparing single-crystal and module readout levels. The results demonstrate that with a CTR below 100 ps, a flat-panel scanner can achieve image quality comparable to that of a reference clinical scanner, with considerable savings in scintillator material.

2.
Phys Med Biol ; 65(5): 055013, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978910

RESUMO

Using Cherenkov radiation in positron emission tomography (PET) has the potential to improve the time of flight (TOF) resolution and reduce the cost of detectors. In previous studies promising TOF results were achieved when lead fluoride (PbF2) crystals were used instead of a scintillator. In this work, a whole-body PbF2 Cherenkov TOF-PET scanner was simulated and optimized. Different configurations of the PbF2 crystals and their surface treatment were considered. Also evaluated was the influence of the crystal-photodetector coupling and of the detection efficiency of the photodetectors. Of special interest is a whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector, which improves the time resolution and reduces the parallax error, without compromising the detection efficiency. Images of a phantom were reconstructed for different configurations of the simulated whole-body PbF2 Cherenkov TOF-PET scanner and the quality of images was compared to that of a whole-body TOF-PET scanner with standard LSO scintillators. The TOF resolution of the whole-body PbF2 Cherenkov TOF-PET scanner with a multi-layer detector was 143 ps FWHM, out of which the fundamental limitation due to light production and transportation was only 22 ps FWHM.


Assuntos
Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Imagem Corporal Total/métodos , Humanos , Imagem Corporal Total/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...