Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39262308

RESUMO

Xylem air embolism is the primary cause of drought-related tree mortality. Phenotypic plasticity of xylem traits is key for species acclimation to environmental variability and evolution. It is widely believed that plants increase xylem embolism resistance in response to drought. However, I argue that this hypothesis, based on extensive literature, relies on sampling methods that overlook predictable anatomical patterns, potentially biasing our understanding of acclimation and adaptation strategies.

2.
Front Plant Sci ; 15: 1414448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988629

RESUMO

Introduction: Drought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base. Methods: We assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree. Results: In both trees, Dh and PMA scaled with DFA 0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2 . The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter. Discussion and conclusions: Apex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level.

3.
Chemosphere ; 344: 140380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813249

RESUMO

Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.


Assuntos
Fluorocarbonos , Salix , Ácido Abscísico/metabolismo , Salix/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Folhas de Planta/metabolismo , Água/metabolismo , Plantas/metabolismo , Xilema/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Ácido Salicílico/metabolismo , Secas
4.
J Exp Bot ; 74(17): 5072-5087, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37352139

RESUMO

The size-related xylem adjustments required to maintain a constant leaf-specific sapwood conductance (KLEAF) with increasing height (H) are still under discussion. Alternative hypotheses are that: (i) the conduit hydraulic diameter (Dh) at any position in the stem and/or (ii) the number of sapwood rings at stem base (NSWr) increase with H. In addition, (iii) reduced stem elongation (ΔH) increases the tip-to-base conductance through inner xylem rings, thus possibly the NSWr contributing to KLEAF. A detailed stem analysis showed that Dh increased with the distance from the ring apex (DCA) in all rings of a Picea abies and a Fagus sylvatica tree. Net of DCA effect, Dh did not increase with H. Using sapwood traits from a global dataset, NSWr increased with H, decreased with ΔH, and the mean sapwood ring width (SWrw) increased with ΔH. A numerical model based on anatomical patterns predicted the effects of H and ΔH on the conductance of inner xylem rings. Our results suggest that the sapwood/heartwood transition depends on both H and ΔH, and is set when the carbon allocation to maintenance respiration of living cells in inner sapwood rings produces a lower gain in total conductance than investing the same carbon in new vascular conduits.


Assuntos
Árvores , Xilema , Folhas de Planta , Água
5.
Glob Chang Biol ; 28(15): 4668-4683, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35555836

RESUMO

Forest trees are experiencing increasing frequency and intensity of drought events with climate change. We investigated xylem and phloem traits from mature Fagus sylvatica and Picea abies trees after 5 years of complete exclusion of throughfall precipitation during the growing season. Xylem and phloem anatomy, leaf and branch biomass were analysed along top branches of ~1.5 m lenght in 5 throughfall precipitation excluded (TE) and 5 control (CO) trees of both beech and spruce. Xylem traits were analysed on wood cores extracted from the stem at breast height. In the top branches of both species, the lumen diameter (or area) of xylem and phloem conduits did not differ between TE and CO trees. At breast height, TE trees of both species produced narrower xylem rings and conduits. While allocation to branch (BM) and needle biomass (LM) did not change between TE and CO in P. abies, TE F. sylvatica trees allocated proportionally more biomass to leaves (LM) than BM compared with CO. Despite artificial drought increased the mortality in the TE plots, our results revealed no changes in both xylem and phloem anatomies, undermining the hypothesis that successful acclimation to drought would primarily involve increased resistance against air embolism.


Assuntos
Abies , Fagus , Picea , Pinus , Aclimatação , Árvores
6.
AoB Plants ; 13(4): plab027, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34316336

RESUMO

Xylella fastidiosa is a xylem-limited bacterium causing the Olive Quick Decline Syndrome, which is currently devastating the agricultural landscape of Southern Italy. The bacterium is injected into the xylem vessels of leaf petioles after the penetration of the insect vector's stylet. From here, it is supposed to colonize the xylem vasculature moving against water flow inside conductive vessels. Widespread vessel clogging following the bacterial infection and causing the failure of water transport seemed not to fully supported by the recent empirical xylem anatomical observations in infected olive trees. We tested the hypothesis that the higher susceptibility to the X. fastidiosa's infection in Cellina di Nardò compared with Leccino is associated to the higher vulnerability to air embolism of its larger vessels. Such hypothesis is motivated by the recognized ability of X. fastidiosa in degrading pit membranes and also because air embolism would possibly provide microenvironmental conditions more favourable to its more efficient aerobic metabolism. We revised the relevant literature on bacterium growth and xylem physiology, and carried out empirical field, mid-summer measurements of xylem anatomy and native embolism in olive cultivars with high (Cellina di Nardò) and low susceptibility (Leccino) to the infection by X. fastidiosa. Both cultivars had similar shoot mass traits and vessel length (~80 cm), but the highly susceptible one had larger vessels and a lower number of vessels supplying a given leaf mass. Native air embolism reduced mean xylem hydraulic conductance by ~58 % (Cellina di Nardò) and ~38 % (Leccino). The higher air-embolism vulnerability of the larger vessels in Cellina di Nardò possibly facilitates the X. fastidiosa's infection compared to Leccino. Some important characteristics of the vector-pathogen-plant interactions still require deep investigations acknowledging both the pathogen metabolic pathways and the biophysical principles of xylem hydraulics.

9.
J Theor Biol ; 502: 110369, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32526220

RESUMO

Xylem conduit diameter widens from leaf tip to stem base and how this widening affects the total hydraulic resistance (RTOT) and the gradient of water potential (Ψxyl) has never been thoroughly investigated. Data of conduit diameter of Acer pseudoplatanus,Fagus sylvatica and Picea abies were used to model the axial variation of RTOT and Ψxyl. The majority of RTOT (from 79 to 98%) was predicted to be confined within the leaf/needle. This means that the xylem conduits of stem and roots, accounting for nearly the total length of the hydraulic path, theoretically provide a nearly negligible contribution to RTOT. Consequently, a steep gradient of water potentials was predicted to develop within the leaf/needle base, whereas lower in the stem water potentials approximate those of rootlets. Our results would suggest that the strong partitioning of RTOT between leaves/needles coupled with basal conduit widening is of key importance for both hydraulic safety against drought-induced embolism formation and efficiency, as it minimizes the exposure of stem xylem to high tensions and makes the total plant's conductance substantially independent of body size.


Assuntos
Acer , Pinus , Folhas de Planta , Água , Xilema
10.
Tree Physiol ; 40(6): 774-781, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32186730

RESUMO

Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-soil water potential difference and possible embolism-related losses of conductance and of sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This condition can have cascading effects in water and carbon (C) fluxes that may ultimately cause tree death. We hypothesize that the maintenance of xylem and phloem conductances is fundamental for survival also under reduced resource availability, when trees may produce effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop where most of the hydraulic resistance is concentrated. We analyzed the treetop xylem and phloem anatomical characteristics in coexisting Scots pine trees, symptomatic and non-symptomatic of drought-induced dieback. We selected the topmost 55 cm of the main stem and selected several sampling positions at different distances from the stem apex to test for differences in the axial patterns between the two groups of trees. We measured the annual ring area, the tracheid hydraulic diameter (Dh) and cell wall thickness (CWT), the conductive phloem area and the average lumen diameter of the 20 largest phloem sieve cells (Dph). Declining trees grew less than the non-declining ones, and despite the similar axial scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had wider Dph. Our results demonstrate that even under drought stress, maintenance of xylem and phloem efficiencies is of primary importance for survival, even if producing fewer larger tracheids may lead to a xylem more vulnerable to embolism formation.


Assuntos
Pinus , Árvores , Secas , Floema , Água , Xilema
11.
Glob Chang Biol ; 26(3): 1739-1753, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578796

RESUMO

Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carry-over of fixed carbon between years, while the second implies far too great an increase in respiration during stand development-leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.


Assuntos
Carbono , Fotossíntese , Biomassa , Dióxido de Carbono , Respiração Celular , Florestas , Folhas de Planta , Árvores
12.
Tree Physiol ; 39(10): 1675-1684, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211372

RESUMO

Understanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results. Species more vulnerable to embolism had lower WD. In angiosperms, the variability in WD was better explained by PATOT and FA, which were highly correlated. Angiosperms with a higher P50 (less negative) had a higher amount of PATOT and total amount of nonstructural carbohydrates. Instead, in gymnosperms, P50 vs PATOT was not significant. The correlation between PATOT and P50 might have a biological meaning and also suggests that the causality of the commonly observed relationship of WD vs P50 is indirect and dependent on the parenchyma fraction. Our study suggests that angiosperms have a potential active embolism reversal capacity in which parenchyma has an important role, while in gymnosperms this might not be the case.


Assuntos
Cycadopsida , Embolia , Magnoliopsida , Humanos , Água , Madeira , Xilema
13.
Plant Physiol Biochem ; 139: 513-520, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31015090

RESUMO

Embolism repair ability has been documented in numerous species. Although the actual mechanism driving this phenomenon is still debated, experimental findings suggest that non-structural carbohydrates (NSC) stored in wood parenchyma would provide the osmotic forces to drive the refilling of embolized conduits. We selected 12 broadleaved species differing in vulnerability to xylem embolism (P50) and amount of wood parenchyma in order to check direct evidence about the possible link(s) between parenchyma cells abundance, NSC availability and species-specific capacity to reverse xylem embolism. Branches were dehydrated until ∼50% loss of hydraulic conductivity was recorded (PLC ∼50%). Hydraulic recovery (ΔPLC) and NSC content was, then, assessed after 1h of rehydration. Species showed a different ability to recover their hydraulic conductivity from PLC∼50%. Removing the bark in the species showing hydraulic recovery inhibited the embolism reversal. Strong correlations between the ΔPLC and: a) the amount of parenchyma cells (mainly driven by the pith area), b) the consumption of soluble NSC have been recorded. Our results support the hypothesis that refilling of embolized vessels is mediated by the mobilization of soluble NSC and it is mainly recorded in species with a higher percentage of parenchyma cells that may be important in the hydraulic recovery mechanism as a source of carbohydrates and/or as a source of water.


Assuntos
Folhas de Planta/metabolismo , Madeira/metabolismo , Xilema/metabolismo , Carboidratos , Osmose , Água/metabolismo
14.
Tree Physiol ; 39(2): 234-242, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189046

RESUMO

The plant carbon balance depends on the coordination between photosynthesis and the long-distance transport of water and sugars. How plants modify the allocation to the different structures affecting this coordination under different environmental conditions has been poorly investigated. In this study, we evaluated the effect of soil water availability on the allocation to leaf, xylem and phloem structures in Fraxinus ornus L. We selected small individuals of F. ornus (height ~2 m) from sites contrasting in soil water availability (wet vs dry). We measured how the leaf (LM) and stem + branch biomass (SBM) are cumulated along the stem. Moreover, we assessed the axial variation in xylem (XA) and phloem tissue area (PA), and in lumen area of xylem vessels (CAxy) and phloem sieve elements (CAph). We found a higher ratio of LM:SBM in the trees growing under drier conditions. The long-distance transport tissues of xylem and phloem followed axial patterns with scaling exponents (b) independent of site conditions. PA scaled isometrically with XA (b ~ 1). While CAxy was only marginally higher at the wet sites, CAph was significantly higher at the drier sites. Our results showed that under reduced soil water availability, F. ornus trees allocate relatively more to the leaf biomass and produce more conductive phloem, which is likely to compensate for the drought-related hydraulic limitations to the leaf gas exchanges and the phloem sap viscosity.


Assuntos
Fraxinus/anatomia & histologia , Floema/anatomia & histologia , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia , Xilema/anatomia & histologia , Meio Ambiente , Água Subterrânea , Transpiração Vegetal , Solo/química
15.
Tree Physiol ; 39(3): 503-510, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307571

RESUMO

Xylem resistance to embolism formation determines the species-specific drought tolerance and the survival prospects of plants under extreme climatic conditions. Fourier Transform-Infrared (FTIR) spectroscopy is a cost-effective and rapid analytical tool with potential beyond its current use in plant physiology. We tested the use of FTIR spectroscopy as a method for estimating wood density (WD) and xylem resistance to embolism formation (P50) in 24 angiosperm species. Higher WD was associated with more negative P50 (r2 = 0.41). Partial least squares regression was applied to establish models of FTIR spectra and the reference data. They showed a high predictive quality for WD (r2 = 0.73), whereas the prediction of P50 was weaker (r2 = 0.49). By including WD in the model as an additional factor influencing P50, its predictive power significantly increased (r2 = 0.59). The spectral range in the model elaboration has been also narrowed (bands of lignin, cellulose, hemicellulose), but this did not influence the model descriptors, suggesting that for P50 prediction broad spectral range is more informative than narrow band regions reflecting main wood constituents. In conclusion, FTIR spectroscopy associated with WD measurements has proven to be a promising alternative to traditional methods for screening of individual- or species-specific resistance to embolism in angiosperms.


Assuntos
Magnoliopsida/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Árvores/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Doenças das Plantas/etiologia , Especificidade da Espécie
16.
Tree Physiol ; 39(3): 495-502, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299505

RESUMO

Anatomical traits such as xylem conduit diameter and vessel connectivity are fundamental characteristics of the hydraulic architecture of vascular plants. Stem xylem conduits are narrow at the stem apex, and this confers resistance to embolisms that might otherwise be induced by large, negative water potentials at the top of tall trees. Below the apex, conduits progressively widen and this characteristic minimizes effects of path length on total hydraulic resistance. While interconnections among xylem vessels have been noted for decades, their role(s) are not fully clarified. For example, we do not know if they allow water to bypass embolized vessels, or increase the risk of spread of embolisms, or how their arrangement varies within a tree. Here we demonstrate the benefit of removing the independent effect of stem length on assessment of effects of external (e.g., climatic) factors on such xylem traits. We measured the hydraulic diameter (Dh) and vessel conductivity index (VCI) along the stem of 21 shrubs/trees of similar height (1.19 < H < 5.45 m) belonging to seven Acacia species, across a wide aridity gradient in Australia. All trees showed similar scaling exponents of Dh (b = 0.33) and VCI (b = 0.53) vs axial distance from the apex (L), thus conforming with general patterns in woody plants. After de-trending for L, neither Dh (P = 0.21) nor VCI (P = 0.109) differed across the aridity gradient. We found that across a wide gradient of aridity, climate had no effect on xylem anatomy of Acacia spp, which was instead dictated by axial distances from stem apices. We argue that the use of standardization procedures to filter out intrinsic patterns of vascular traits is an essential step in assessing climate-driven modifications of xylem architecture.


Assuntos
Botânica/métodos , Árvores/anatomia & histologia , Xilema/anatomia & histologia , Acacia/anatomia & histologia , Acacia/metabolismo , Clima , Meio Ambiente , New South Wales , Especificidade da Espécie , Árvores/metabolismo , Vitória , Água/metabolismo , Xilema/metabolismo
17.
Tree Physiol ; 38(8): 1088-1097, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920598

RESUMO

As a tree grows taller, the increase in gravitational pressure and path length resistance results in lower water potentials at a given flow rate and higher carbon construction costs to transport a given amount of water to the leaves. We investigated how hydraulic safety and efficiency are coordinated under the constraints of higher cavitation risks and higher carbon construction costs with increasing tree height. We combined measurements of xylem tracheid anatomical traits with the vulnerability to drought-induced embolism and hydraulic conductivity of the apical shoots of 2- to 37-m tall Picea abies trees growing at two sites in the Dolomites (Italian Eastern Alps). We found that the theoretical hydraulic conductivity of the apical shoots increased with tree height at both sites (P < 0.001) as a result of an increase in either total tracheid number or mean hydraulic diameter. The xylem water potential inducing 50% loss of apical conductance significantly increased from small (-4.45 ± 0.20 MPa) to tall trees (-3.65 ± 0.03 MPa) (P = 0.007). The more conductive xylem at the treetop of taller trees allows the full compensation for the height-related hydraulic constraints and minimizes the additional carbon costs of transporting water over a longer path length. The corresponding increase in vulnerability to cavitation shows that hydraulic efficiency is prioritized over safety during height growth.


Assuntos
Picea/anatomia & histologia , Picea/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Aclimatação , Itália , Picea/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Água/fisiologia , Xilema/crescimento & desenvolvimento
18.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655212

RESUMO

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/anatomia & histologia , Europa (Continente) , Geografia , Modelos Estatísticos , Especificidade da Espécie , Árvores/anatomia & histologia , Xilema/anatomia & histologia
19.
Front Plant Sci ; 8: 737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533792

RESUMO

The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926-2012) consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1-10 days offset) between the periods when anatomical traits had significant correlations with temperature in recent decades (1969-2012) and available xylogenesis data (1996-2005), previously collected at the same site. Yet, results for the 1926-1968 period indicate a later onset and earlier ending of the cambial activity by 6-30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4-5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context.

20.
Tree Physiol ; 37(7): 976-983, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379577

RESUMO

The analysis of xylem cell anatomical features in dated tree rings provides insights into xylem functional responses and past growth conditions at intra-annual resolution. So far, special focus has been given to the lumen of the water-conducting cells, whereas the equally relevant cell wall thickness (CWT) has been less investigated due to methodological limitations. Here we present a novel approach to measure tracheid CWT in high-resolution images of wood cross-sections that is implemented within the specialized image-analysis tool 'ROXAS'. Compared with the traditional manual line measurements along a selection of few radial files, this novel image-analysis tool can: (i) measure CWT of all tracheids in a tree-ring cross-section, thus increasing the number of individual tracheid measurements by a factor of ~10-20; (ii) measure the tangential and radial walls separately; and (iii) laterally integrate the measurements in a customizable way from only the thinnest central part of the cell walls up to the thickest part of the tracheids at the corners. Cell wall thickness measurements performed with our novel approach and the traditional manual approach showed comparable accuracy for several image resolutions, with an optimal accuracy-efficiency balance at 100× magnification. The configurable settings intended to underscore different cell wall properties indeed changed the absolute levels and intra- and inter-annual patterns of CWT. This versatility, together with the high data production capacity, allows to tailor the measurements of CWT to the specific goal of each study, which opens new research perspectives, e.g., for investigating structure-function relationships, tree stress responses and carbon allocation patterns, and for reconstructing climate based on intra- and inter-annual variability of anatomical wood density.


Assuntos
Parede Celular/ultraestrutura , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...