Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22047, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333554

RESUMO

Polarons play a major role in the description of optical, electrical and dielectrical properties of several ferroelectric oxides. The motion of those particles occurs by elementary hops among the material lattice sites. In order to compute macroscopic transport parameters such as charge mobility, normal (i.e. Fickian) diffusion laws are generally assumed. In this paper we show that when defect states able to trap the polarons for long times are considered, significant deviations from the normal diffusion behaviour arise. As an example of this behavior, we consider here the case of lithium niobate (LN). This can be considered as a prototypical system, having a rich landscape of interacting polaron types and for which a significant wealth of information is available in literature. Our analysis considers the case of a stoichiometric, defect-free lithium niobate containing a certain concentration of small electron polarons hopping on regular Nb sites, and compares it to the material in congruent composition, which is generally found in real-life applications and which is characterized by a large concentration of antisite NbLi defects. While in the first case the charge carriers are free polarons hopping on a regular Nb sublattice, in the second case a fraction of polarons is trapped on antisite defects. Thus, in the congruent material, a range of different hopping possibilities arises, depending on the type of starting and destination sites. We develop a formalism encompassing all these microscopic processes in the framework of a switching diffusion model which can be well approximated by a mobile-immobile transport model providing explicit expressions for the polaron mobility. Finally, starting from the Marcus-Holstein's model for the polaron hopping frequency we verify by means of a Monte Carlo approach the diffusion/mobility of the different polarons species showing that, while free polarons obey the laws for normal diffusion as expected, bound polarons follow an anomalous diffusion behaviour and that in the case of the congruent crystal where mixed free and bound polaron transport is involved, our expressions indeed provide a satisfactory description.

2.
J Phys Condens Matter ; 36(35)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38759682

RESUMO

The absorption features of optically generated, short-lived small bound electron polarons are inspected in congruent lithium tantalate, LiTaO3(LT), in order to address the question whether it is possible to localize electrons at interstitial TaV:VLidefect pairs by strong, short-range electron-phonon coupling. Solid-state photoabsorption spectroscopy under light exposure and density functional theory are used for an experimental and theoretical access to the spectral features of small bound polaron states and to calculate the binding energies of the small bound TaLi4+(antisite) and TaV4+:VLi(interstitial site) electron polarons. As a result, two energetically well separated (ΔE≈0.5 eV) absorption features with a distinct dependence on the probe light polarization and peaking at 1.6 eV and 2.1 eV are discovered. We contrast our results to the interpretation of a single small bound TaLi4+electron state with strong anisotropy of the lattice distortion and discuss the optical generation of interstitial TaV4+:VLismall polarons in the framework of optical gating of TaV4+:TaTa4+bipolarons. We can conclude that the appearance of carrier localization at TaV:VLimust be considered as additional intermediate state for the 3D hopping transport mechanisms at room temperature in addition to TaLi, as well, and, thus, impacts a variety of optical, photoelectrical and electrical applications of LT in nonlinear photonics. Furthermore, it is envisaged that LT represents a promising model system for the further examination of the small-polaron based photogalvanic effect in polar oxides with the unique feature of two, energetically well separated small polaron states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...